Abstract:
A MEMS actuator includes a coil stack in the form of microfabricated, electrically conductive first and second superposed layers. A magnet array is superposed in magnetic communication with the coil stack, with first and second coils being selectively, electrically actuatable to generate relative movement between the coil stack and the magnet array both in-plane and out-of-plane. In various embodiments, a plurality of the actuators are integrally coupled to a microfabricated compliant mechanism to provide a high bandwidth, six degree of freedom nanopositioner.
Abstract:
A method of fabricating a micro actuator is provided including a media stage having a media loading surface and a coil for driving the media stage, formed on the opposite surface of the media stage to the media loading surface. The method includes forming a groove on a first surface of a first substrate, forming a coil on a first surface of a second substrate, bonding the first surface of the first substrate to the first surface of the second substrate, and forming the media loading surface on a second surface of the second substrate, which is opposite the first surface of the second substrate.
Abstract:
The present invention relates to a micro actuator, which is located on a substrate and includes a plate and a bushing. A rear end of the plate exhibits a tapered triangular shape or an arc-like shape or has at least a bump disposed on a bottom surface of the rear end of the plate, making that a non-planar contact is present between the rear end of the plate and the substrate when both are contacted, so as to effectively reduce the friction and driving voltage and prolong the lifespan of components.
Abstract:
An actuator of the present invention includes a moving part, and a driving electrode which is comprised of electrode parts electrically isolated from each other and drives the moving part. A drive voltage is applied selectively to some of the electrode parts to control an electrostatic force which acts on the moving part.
Abstract:
The present invention provides a process for manufacturing an apparatus. The process, in one embodiment, includes providing a micro-electro-mechanical system (MEMS) device, the micro-electro-mechanical system (MEMS) device including an actuator coupled to a movable feature, sacrificial material fixing the actuator and movable feature with respect to one another, and a layer of material located over the actuator, movable feature and sacrificial material. The process may further include removing only a portion of the layer of material to expose the sacrificial material, and subjecting the exposed sacrificial material to an etchant to release the movable feature.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity (P) and a top surface; forming a first interaction region having a second type of conductivity (N), opposite to the first type of conductivity (P), in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity (N), so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
Abstract:
The tiltable-body apparatus including a frame member, a tiltable body, and a pair of torsion springs having a twisting longitudinal axis. The torsion springs are disposed along the twisting longitudinal axis opposingly with the tiltable body being interposed, support the tiltable body flexibly and rotatably about the twisting longitudinal axis relative to the frame member, and include a plurality of planar portions, compliant directions of which intersect each other when viewed along a direction of the twisting longitudinal axis. A center of gravity of the tiltable body is positioned on the twisting longitudinal axis of the torsion springs.
Abstract:
There is provided a micro power generator enhanced in efficiency and power generation output, and having an increased temperature range for operation. The micro power generator comprises: a high-temperature heat source; a low-temperature heat source; an enclosed body containing a working substance therein, the enclosed body being deformable by means of a phase change of the working substance between a first shape wherein heat can be transferred from the high-temperature heat source and a second shape wherein heat can be transferred to the low-temperature heat source; a permanent magnet constituting the enclosed body, the permanent magnet being maintained in a first position when the enclosed body has the first shape and in a second position when the enclosed body has the second shape; and a wire in which an electric current is induced by a movement of the permanent magnet. Further, the present invention provides an apparatus for producing a reciprocating movement between two heat sources having a temperature difference therebetween.
Abstract:
The invention relates to an actuating member comprising an elastomer body that is provided with one electrode each on opposite peripheries. The aim of the invention is to improve the dynamism of such an actuating member. To this end, at least one periphery is provided with at least one waved section that comprises elevations and depressions as the extremes disposed in parallel to the cross direction. Said section is covered by an electrode that completely covers at least a part of the extremes and that extends across the waved section.
Abstract:
The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 μm, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam. In electro-thermal actuation, motion is induced in specific beams by designing a lateral gradient of temperature coefficient of expansion (TCE) within the beams. The lateral TCE gradient is achieved in the same manner as with self-assembly, by purposefully offsetting the lower metal layers with layers of dielectric with respect to the top metal layer of a CMOS-MEMS beam. A heater resistor, usually made from a CMOS polysilicon layer, is embedded into the beam or into an adjacent assembly to heat the beam. When heated, the TCE gradient will cause a stress gradient in the beam, resulting in the electro-thermal actuation. Because of the rules governing abstracts, this abstract should not be used to construe the claims.