Abstract:
Disclosed is a partial oxidation process including separation of particles high in carbon content from particles low in carbon content suspended in water used for quenching or scrubbing the gaseous products of the partial oxidation of a solid ash-containing carbonaceous fuel.
Abstract:
An increase in the temperature of the gaseous working medium in a gas turbine engine fueled with coal-fired gasifier having a rotating fluidized bed, where the coal is fed radially inwardly through the bed toward the axis of rotation is obtained by including a secondary combustor. The gasifier is fed with compressor discharge air and is operated fuel rich by limiting the amount of compressor discharge air fed to the fluidized bed. The excess compressor discharge air mixes with the exhaust from the gasifier for further combustion resulting in an increase in the temperature of the gaseous working medium that is ultimately utilized for driving the turbine of the engine.
Abstract:
A process for the gasification of coal and other carbonaceous materials in which solid particulate carbonaceous material is dried without pyrolysis or oxidation by direct contact with a fluent stream of hot synthesis gas product. The dried carbonaceous material is separated from the moist synthesis gas, water is removed from the moist gas and converted to steam, and the steam is mixed with oxygen bearing gas and reacted with the dried carbonaceous material to produce synthesis gas and an ash residue. The oxygen and steam mixture is heated by direct contact with the ash residue, while the hot synthesis gas is utilized to dry the incoming particulate carbonaceous material. Synthesis gas containing hydrogen and carbon oxides is recovered from the process.
Abstract:
A CENTRAL VESSEL IS SURROUNDED BY GROUPS OF HYDROCYCLONES ARRANGED ONE ABOVE ANOTHER, EACH HYDROCYCLONE FORMING AN ELONGATED VORTEX CHAMBER HAVING AN ACCEPT END PROVIDED WITH AN INJECT INLET AND AN AXIAL ACCEPT OUTLET, EACH CHAMBER ALSO HAVING AN OPPOSED REJECT END PROVIDED WITH AN AXIAL REJECT OUTLET. THE CENTRAL VESSEL FORMS AN ACCEPT CHAMBER COMMON TO AND COMMUNICATING WITH THE VORTEX CHAMBERS BY WAY OF THEIR ACCEPT OUTLETS. MEANS ARE PROVIDED AT THE REJECT ENDS OF THE VORTEX CHAMBERS FOR COLLECTING THE REJECT FROM THE REJECT OUTLETS, THE COLLECTING MEANS INCLUDING MEANS IN THE VICINITY OF THE REJECT OUTLETS FOR ENABLING DETECTION OF A CHANGE IN THE REJECT FLOW.
Abstract:
Provided is a reaction intensification structure. The structure includes a pyrolysis gasification apparatus, a flow strengthening mechanism and a turbulence mechanism. The pyrolysis gasification apparatus is cylindrical, and is provided with a feed inlet and a discharge outlet at front and rear ends thereof respectively. The flow strengthening mechanism is provided on an outer wall of the pyrolysis gasification apparatus at a position near the front end, and it is communicated with such apparatus and at an angle of 20° to 50° relative to a radial direction of such apparatus. The turbulence mechanism includes multiple turbulence bodies distributed in an array on an inner wall of the pyrolysis gasification apparatus and protrude towards a center of such apparatus. The turbulence bodies are divided into multiple groups distributed along an axial direction of such apparatus. Each group of turbulence bodies are distributed along a circumferential direction of such apparatus.
Abstract:
Method and device implemented in a reactor for the plasma treatment of carried fragmented material or of pulverized elements by a support gas where the main element is an intermediate temperature plasma (PIT) generator fed by a source of electric pulses, the amplitude of whose current is limited and for which the generating frequency, the duration of the pulses and the duration of the time spans between the pulses are determined in such a way as to generate a nonthermal plasma (PIT) of large extent, the plasma and the carrier gas flux (4) laiden with the fragments of material or of pulverized elements to be treated (5) moving along helical trajectories coaxial with the axis of the reactor at controlled angles a and B respectively relative to the plane perpendicular to the axis of the reactor, the angles a and B being able to vary in a given manner according to the properties of the material to be treated and the technological parameters and the dimensions of the reactor. Use of the invention both for the combustion of combustible powders in the boilers of electric power plants and for the generation of solid or gaseous combustible products, of given properties and dimensions, effected through the organization of plasmochemical reactions on fragments or pulverized elements of organic materials in the reactor.
Abstract:
There is provided coal gasification unit including: a coal gasifier; a char recovery unit; flare equipment; an air flow rate adjustment valve and an oxygen supply flow passage that supply oxygen-containing gas to the coal gasifier; an inert gas supply flow passage that supplies nitrogen gas to an upstream side of the char recovery unit; and a control unit that controls a supply amount of the oxygen-containing gas and a supply amount of the nitrogen gas, in which the coal gasifier has a starting burner, and in which the control unit controls the supply amount of the nitrogen gas prior to starting combustion of starting fuel by the starting burner so that an oxygen concentration of mixed gas in which combustion gas generated by combustion of the oxygen-containing gas and the starting fuel has been mixed with the nitrogen gas becomes not more than an ignition concentration.