摘要:
Provided herein is a reagent preparation for loop-mediated isothermal amplification of nucleic acids comprising: at least one polymerase enzyme, a target-specific primer set, and dinucleotide triphosphates (dNTPs) in a single, dry format; wherein said reagent preparation is water soluble and stable above 4° C.
摘要:
Dipsticks for testing for the presence of a target nucleic acid in a sample solution are described the dipsticks comprise a universal capture probe immobilised at a capture zone of the dipstick. The universal capture probe is capable of hybridising to a hook capture probe which is hybridised to the target nucleic acid in the sample solution. A contact end of the dipstick is contacted with the sample solution to cause hook capture probe hybridised to the target nucleic acid to move by capillary action to the capture zone where the target nucleic acid can be detected. Use of the universal and hook capture probes allows dipsticks to be prepared which can be used to capture any target nucleic acid, thereby simplifying preparation of the dipsticks. Specificity of target nucleic acid capture is then achieved by use of an appropriate hook capture probe. Methods and kits are also described.
摘要:
An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.
摘要:
Use of helper probes in dipstick assays is described. In a dipstick assay to test for the presence of a target nucleic acid in a sample solution, the sample solution is contacted with the contact end of the dipstick to cause the sample solution to move by capillary action to a capture zone of the dipstick at which target nucleic acid is captured. The target nucleic acid may be captured at the capture zone by a capture probe capable of hybridising to the target nucleic acid. A labelled detection probe capable of hybridising to the target nucleic acid may be used to detect the target nucleic acid at the capture zone. A helper probe may be used to enhance the binding of the capture and/or detection probe to the target nucleic acid, thereby improving the sensitivity of target nucleic acid detection. Dipsticks and kits are also described.
摘要:
This disclosure provides for methods and reagents for rapid multiplex RPA reactions and improved methods for detection of multiplex RPA reaction products. In addition, the disclosure provides new methods for eliminating carryover contamination between RPA processes.
摘要:
The invention relates to storage of nucleic acid (particularly mRNA) on a solid support and to using such nucleic acid in nucleic acid synthesis or amplification reactions. In a preferred aspect, the invention provides synthesis of cDNA and cDNA libraries.
摘要:
The present invention provides improved methods for collecting cells for subsequent analysis. More specifically, the invention provides methods for collecting purified cell samples from a flow cytometer onto a solid support on which cell lysis occurs and genetic material is immobilized.
摘要:
The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.
摘要:
The present application discloses a system for detecting target nucleic acid comprising: a container comprising a nucleic acid amplification mix comprising a primer labeled with different haptens at its 5′ and 3′ ends, and optionally dNTP labeled with a hapten to form a nucleic acid complex; and a lateral flow test device comprising a reservoir area comprising reagent conditions suitable for binding of a specific binding partner with the nucleic acid complex; a dye area comprising a specific binding partner to the nucleic acid complex, wherein the specific binding partner is linked or conjugated to a reporter dye or another hapten; and a test area comprising a different specific binding partner specific to a different aspect of the nucleic acid complex.
摘要:
The invention provides methods of detecting a nucleic acid. The methods comprise contacting the nucleic acid with one or more types of particles having oligonucleotides attached thereto. In one embodiment of the method, the oligonucleotides are attached to nanoparticles and have sequences complementary to portions of the sequence of the nucleic acid. A detectable change (preferably a color change) is brought about as a result of the hybridization of the oligonucleotides on the nanoparticles to the nucleic acid. The invention also provides compositions and kits comprising particles. The invention further provides methods of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the methods, and methods of using the conjugates. In addition, the invention provides nanomaterials and nanostructures comprising nanoparticles and methods of nanofabrication utilizing nanoparticles. Finally, the invention provides a method of separating a selected nucleic acid from other nucleic acids.