Abstract:
A light emitting sealed body includes a housing which stores a discharge gas in an internal space and is provided with a first window portion to which first light is incident and a second window portion from which second light is emitted. The housing includes at least one flow path which is partitioned from the internal space and extends toward at least one of the first window portion and the second window portion.
Abstract:
A cathode apparatus for an ion source has a cathode with a positioning feature and a blind hole. A cathode holder has an aperture defined by a thru-hole and a locating feature defined along an aperture axis. The thru-hole receives the cathode along the aperture axis in first and second alignment positions based on a rotational orientation of the positioning feature with respect to the locating feature. The first alignment position locates the cathode at a first axial position along the aperture axis. The second alignment position locates the cathode at a second axial position along the axial axis. A filament device has a filament clamp, a filament rod defining a filament axis, and a filament coupled to the filament rod. The filament clamp is in selective engagement with the filament rod to selectively position the filament along the filament axis within the blind hole.
Abstract:
An ion source has an arc chamber with a first end and a second end. A first cathode at the first end of the arc chamber has a first cathode body and a first filament disposed within the first cathode body. A second cathode at the second end of the arc chamber has a second cathode body and a second filament disposed within the second cathode body. A filament switch selectively electrically couples a filament power supply to each of the first filament and the second filament, respectively, based on a position of the filament switch. A controller controls the position of the filament switch to alternate the electrical coupling of the filament power supply between the first filament and the second filament for a plurality of switching cycles based on predetermined criteria. The predetermined criteria can be a duration of operation of the first filament and second filament.
Abstract:
Provided is a compact device which captures, over a large solid angle range, electrically charged particles emitted from a point source and parallelizes the trajectories of said charged particles. The present invention is configured from: an electrostatic lens comprising a plurality of axisymmetric electrodes (10-14) and an axisymmetric aspherical mesh (2) which has a surface that is concave away from the point source; and a flat collimator plate (3) positioned coaxially with the electrostatic lens. The acceptance angle for the electrically charged particles generated from a point source (7) is ±30° or greater. The shape of the aspherical mesh (2), and the potentials and the positions of a ground electrode (10) and application electrodes (11-15) are adjusted so that the trajectories of the electrically charged particles are substantially parallelized by the electrostatic lens. The electrostatic lens and the flat collimator plate are positioned on a common axis.
Abstract:
The invention relates to a cathode arrangement comprising: a thermionic cathode comprising an emission portion provided with an emission surface for emitting electrons, and a reservoir for holding a material, wherein the material, when heated, releases work function lowering particles that diffuse towards the emission portion and emanate at the emission surface at a first evaporation rate; a focusing electrode comprising a focusing surface for focusing the electrons emitted from the emission surface of the cathode; and an adjustable heat source configured for keeping the focusing surface at a temperature at which accumulation of work function lowering particles on the focusing surface is prevented.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
Provided is an electron source which provides a stable electron beam even when vibration is applied from external to a device which uses the electron source. The electron source is provided with a needlelike chip (1) having an electron emitting section at one end; a cup-like component (6) bonded to the other end of the needlelike chip (1); and a filament (3) for heating the cup-like component (6). The filament (3) is arranged in a gap inside the cup-like component (6), in a noncontact state to the cup-like component (6).
Abstract:
An electron beam irradiating apparatus adopting a cathode plate including a non-metal conductive material. The electron beam irradiating apparatus includes a chamber having an opening at the top thereof, a cathode plate disposed to cover the opening of the chamber, a susceptor disposed on the inner bottom surface of the chamber, a grid plate disposed between the cathode plate and the susceptor, and a gas injection ring disposed below the grid plate. The cathode plate and the chamber are electrically insulated from each other, and the grid plate is electrically insulated from the chamber and the cathode plate. The cathode plate may be a single plate formed of the non-metal conductive material alone or a double cathode plate in which at least a lower surface thereof, facing the bottom surface of the chamber, is formed of a non-metal conductive material. When electrons are emitted from the cathode plate by applying a predetermined voltage to the cathode and grid plates, simultaneous emission of metal atoms from the cathode plate can be eliminated.
Abstract:
Multiple beam electron beam lithography uses an array of vertical cavity surface emitting lasers (VCSELS) to generate laser beams, which are then converted to electron beams using a photocathode. The electron beams are scanned across a semiconductor substrate or lithography mask to imprint a pattern thereon. The use of VCSELs simplifies the design of the electron beam column and improves the throughput and writing resolution of the lithography system.