摘要:
In a monolithic OEIC in which an FET and a light-emitting device are integrated, the light-emitting device has a first clad layer, an active layer, and a second clad layer stacked on a substrate, the FET has a channel layer and source and drain layers with a high impurity concentration stacked on the substrate, etching mask layers on the source and drain layers, and a gate electrode formed on a channel layer between source and drain electrodes and the source and drain layers, the first clad layer of the light-emitting diode and the source and drain layers with a high impurity concentration of the FET are formed of the same semiconductor layer, and an active layer of the light-emitting device and the etching mask layers of the FET are formed of the same semiconductor layer.
摘要:
In a vertical semiconductor laser, the top mirror is composed of alternating layers of lattice-mismatched semiconductors. Quantum reflections and other charge transport barriers for majority carriers at the interface, and hence electrical resistance and power dissipation, are reduced by choosing the lattice-mismatched semiconductor materials in such a manner as to align their band edges for majority carriers. On the other hand, the semiconductor materials are selected to supply relatively large refractive index differences, and hence relatively large optical reflections, at their interfaces. The lattice-mismatching may also produce vertical thread dislocations through the stack, which increase the electrical conductivity.
摘要:
A semiconductor laser device comprises a semiconductor mesa portion formed above semiconductor substrate by a predetermined interval, an active region, formed between the mesa portion and semiconductor substrate and consisting of a semiconductor having a forbidden band width smaller than those of the mesa portion and semiconductor substrate, for contributing to light emission, a pair of buried portions formed at both sides in a widthwise direction of and in contact with the active region and consisting of a semiconductor having a forbidden band width larger than that of the active region, a total width of the buried portions and the active region being smaller than that of the mesa portion, thereby forming a gap at a side of each of the buried portions between the mesa portion and semiconductor substrate to electrically insulate the mesa portion and semiconductor substrate, and supporting portions formed integrally with the mesa portion so as to support the mesa portion with respect to the substrate in association with the active region and the buried portions.
摘要:
Adiabatic mode control and structural reproducibility are achieved by a tapered semiconductor waveguide structure wherein semiconductor guiding layers are interleaved with stop-etch layers and each guiding layer extends further along the propagation axis of the waveguide further than the guiding layer immediately adjacent thereabove to create a staircase-like core or guiding structure. Cladding regions of appropriate semiconductor material having a lower index of refraction than the tapered core structure may be added to completely surround the tapered guiding structure. The profile of the tapered structure is realizable as any desired staircase-like shape such as linear, parabolic, exponential or the like. Additional layers of higher index of refraction semiconductor material may be included in the cladding region to permit additional beam shaping of the expanded spatial mode propagating along the tapered waveguide.Photolithographic masks defining successively larger exposed areas are aligned, deposited over the waveguide structure, and then removed following each etching step. Material selective etching techniques are employed to remove exposed (unmasked) portions of guiding layers. In sequence, the exposed, formerly underlying portions of the stop-etch layers are then removed using material selective etching. Iteration of the above process steps permits a tapered waveguide structure to be defined.
摘要:
A new method for increasing the modulation bandwidth of InGaAsP lasers is described herein. The method of the present invention is based on the gain enhancement doping of the lasers active layer. Lasers with highly doped active regions were demonstrated to have larger modulation bandwidths than lightly doped devices.
摘要:
A semiconductor laser formed on an InP substrate to have a hetero structure comprising a plurality of In.sub.1-x Ga.sub.x`As.sub.y P.sub.1-y (0.42y.ltoreq.x.ltoreq.0.5y,0.ltoreq.y.ltoreq.1) layers which are lattice-matched with InP, in which a light emitting layer included in the layers and having a forbidden band width larger than 0.6 eV but smaller than 0.9 eV at room temperature is sandwiched between two InP layers on the InP substrate, and in which there is provided between the light emitting layer and the InP layer grown thereon at least one buffer layer having a forbidden band width larger than the forbidden band width of the light emitting layer but smaller than the forbidden band width of InP. The forbidden band width of the buffer layer at room temperature may be larger than 0.8 eV but smaller than 1.0 eV.
摘要:
An apparatus is configured to operate in a single fundamental transverse mode and the apparatus includes a waveguide layer between an n-doped cladding layer and a p-doped cladding layer. The waveguide layer includes a first waveguide part, and an active layer located between the first waveguide part and the p-doped cladding layer, the active layer being asymmetrically within the waveguide layer closer to the p-doped cladding layer than the n-doped cladding layer. The refractive index of the n-doped cladding layer being equal to or larger than the p-doped cladding layer. A first end of the first waveguide part is adjacent to the n-doped cladding layer. A second end of the first waveguide part is adjacent to a first end of the active layer. A desired donor density is doped in the first waveguide part for controlling the carrier density dependent internal optical loss in the first waveguide part at high injection levels.
摘要:
A quantum cascade laser element includes: a semiconductor substrate; a semiconductor laminate including an active layer having a quantum cascade structure; a first electrode formed on a surface on an opposite side of the semiconductor laminate from the semiconductor substrate; a second electrode; and an insulating film formed on at least one end surface of a first end surface and a second end surface of the semiconductor laminate. The first electrode includes a first metal layer made of a first metal, and a second metal layer made of a second metal having a higher ionization tendency than that of the first metal. The first metal layer has a first region exposed to an outside. The second metal layer has a second region located on one end surface side with respect to the first region. The insulating film reaches the second region from the one end surface.
摘要:
An optical full-field transmitter for an optical communications network includes a primary laser source configured to provide a narrow spectral linewidth for a primary laser signal, and a first intensity modulator in communication with a first amplitude data source. The first intensity modulator is configured to output a first amplitude-modulated optical signal from the laser signal. The transmitter further includes a first phase modulator in communication with a first phase data source and the first amplitude-modulated optical signal. The first phase modulator is configured to output a first two-stage full-field optical signal. The primary laser source has a structure based on a III-V compound semiconductor.
摘要:
A semiconductor optical amplifier includes an input-side optical amplifier waveguide section that has a first active core layer. An output-side optical amplifier waveguide section connects to the input-side optical amplifier waveguide section and has a second active core layer that is wider than the first active core layer. The width of the first active core layer and relative refractive index difference between the first active core layer and adjacent clad section in the width direction of the first active core layer, and the width of the second active core layer and relative refractive index difference between the second active core layer and adjacent clad section in the width direction of the second active core layer are set such that the carrier density and optical confinement factor in the first active core layer are higher than the carrier density and optical confinement factor in the second active core layer.