Abstract:
A bandgap voltage generator includes a plurality of calibration transistors. A test circuit measures the bandgap reference voltage generated by the bandgap voltage generator and enables a subset of the calibration transistors to correct to the bandgap reference voltage.
Abstract:
A power harvesting circuit includes a new transmitter topology that ensures that no junction of thin oxide transistors forming the power harvesting circuit will experience a voltage across junctions of the transistors that is more than a maximum tolerable junction voltage. A supplemental power feed circuit operates to provide a supplemental feed current to components in a transmitter circuit when power harvested from a receiver circuit is insufficient to adequately power these components of the transmitter circuit, which may occur during high frequency operation of communications channels coupling the transmitter and receiver circuits. The supplemental power feed circuit also operates to sink a shunt current when power harvested from the receiver circuit is more than is needed to power the components in the transmitter circuit.
Abstract:
A phase locked loop (PLL) circuit includes a phase comparison circuit configured to compare phase of an input signal to phase of a feedback signal and generate a control signal responsive to the phase comparison and an oscillator circuit configured to generate an output signal at a frequency set by said control signal, where said feedback signal is derived from said output signal. The PLL circuit further operates in a calibration mode of operation wherein the oscillator circuit operates in a frequency locked loop mode to compare frequency of the input signal to frequency of the output signal and center a gain of the oscillator circuit across process, voltage and temperature in response to the frequency comparison. Furthermore, bias current for a charge pump within the phase comparison circuit is calibrated during calibration mode of operation to match a temperature independent reference current.
Abstract:
A clock signal generation circuit configured to generate the clock signal having a frequency that is maintained across variations in a number of operating conditions, such as changes in supply voltage, temperature and processing time. In an embodiment, the frequency spread of the generated clock signal of a PVT-compensated CMOS ring oscillator is configured to compensate for variations in the supply voltage, as well as for variations in process and temperature via a process and temperature compensation circuit. The PVT-compensated CMOS ring oscillator includes a regulated voltage supply circuit to generate a supply voltage that is resistant to variations due to changes in the overall supply voltage.
Abstract:
A plurality of frames of data are transmitted over a serial interface in a manner that limits interference on the interface. This involves generating a pseudo-random number and asserting a read control signal at a moment in time, wherein a timing of the moment in time is influenced by the pseudo-random number. In response to the asserted read control signal, a frame of data is read from a data buffer. The read frame of data is then transmitted over the serial interface. A number of alternative embodiments are possible, such as embodiments in which buffer read operations are triggered based on the buffer fill level, and other embodiments in which buffer read operations are triggered by a timer. By using the pseudo-random number to influence the buffer read operations, timing coherency between the reading of frames is made low, thereby limiting interference.
Abstract:
An electronic device includes a power supply, a ground, and an intermediate ground having a voltage less than a voltage of the power supply and greater than a voltage of the ground. The electronic device also includes an error amplifier having an input stage coupled between the power supply and the ground, and an output stage coupled between the power supply and the intermediate ground. A ballast transistor is coupled to receive an output from the error amplifier. A feedback circuit is coupled to an output of the ballast transistor to generate feedback signals, and the error amplifier operates in response to the feedback signals.
Abstract:
A discovered NFC-B listen mode device is put to SLEEP state only when there are one or more NFC-B listen mode devices yet to be discovered. An optimal value for the number of time slots indicated in a command is computed based on a combination of whether an empty time slot was detected and/or collision was detected and/or an NFC-B listen mode device was discovered in a discovery cycle. The compliance with the NFC Forum Activity Specification allows the direct activation of an NFC-B listen mode device, and thus speeds up the data transfer phase and consumes much less power.
Abstract:
A pseudo dual port memory includes a set of dual port memory cells having a read port and a write port, and configured to store data words in each of a plurality of addressed locations, and a set of single port memory cells having a read/write port, and configured to store data words in each of a plurality of addressed locations. A valid data storage unit is configured to store valid bits corresponding to the addressed locations of the set of dual port memory cells and the set of single port memory cells. Control circuitry is configured to access the addressed locations of the set of dual port memory cells and the set of single port memory cells. The control circuitry performs a simultaneous write operation using the write port of the set of dual port memory cells and the read/write port of the set of single port memory cells, and updates corresponding valid bits in the valid data storage unit, and performs a parallel read operation, at a same addressed location of the set of dual port memory cells and the set of single port memory cells, using the read port of the set of dual port memory cells and the read/write port of the set of single port memory cells, and determining which stored data word is valid based upon the corresponding valid bits in the valid data storage unit.
Abstract:
In near field communication between an active initiator and a plurality of passive listening devices, the initiator device obtains a unique identity code from each listening device using an initialization process. The initiator transmits a poll request signal including a sequence of coupled data including an identification vector and an allocation vector. Each listening device stores an embedded introduction vector. In response to receive of the poll request signal, the listening device compares each received introduction vector with its stored embedded introduction vector. If a match is found, the listening device calculates a time slot for transmission of its poll response signal based on the coupled allocation vector with the matched introduction vector. The time slot calculated will not overlap with any other time slot so that bit level collisions in the poll response signals will be avoided.
Abstract:
A method for managing the operation of an object capable of contactless communication with a reader magnetically coupled to the object includes a phase for transmission of information from the object to the reader and includes a modulation of the impedance of a load connected across the terminals of the antenna of the object. Prior to the transmission phase, a monitoring phase includes a monitoring of the level of amplitude modulation of a modulated test signal present at the antenna of the object and resulting from a test modulation of the impedance of the load and a capacitive modification of the impedance of the load if this level is lower than a threshold.