Abstract:
Objects of the present invention are to provide a novel dehydrogenation reaction catalyst, to provide a method that can produce a ketone, an aldehyde, and a carboxylic acid with high efficiency from an alcohol, and to provide a method for efficiently producing hydrogen from an alcohol, formic acid, or a formate, and they are accomplished by a catalyst containing an organometallic compound of Formula (1).
Abstract:
The present invention relates to a process for preparing N-(5-chloro-2-isopropylbenzyl)cyclopropanamine by hydrogenation of N-[(5-chloro-2-isopropylphenyl)methylene]cyclopropanamine over specific platinum catalysts.
Abstract:
An optically active compound production method using a column reactor, a column for column reactor is charged with asymmetric catalyst particles to produce the column reactor, and reaction compound is introduced into column reactor to bring reaction compound into contact with asymmetric catalyst particles, whereby reaction compound is converted to optically active compound. Asymmetric catalyst particles are preferably resin particles that are prepared from a monomer composition containing a proline derivative monomer having unsaturated bond and radical polymerization initiator and serve as catalyst for enamine mechanism reaction. Asymmetric catalyst particles are preferably resin particles prepared by micro-channel method including injecting monomer composition into continuous phase to thereby form droplets of monomer composition in continuous phase and then heating droplets to cause proline derivative monomer having an unsaturated bond to undergo radical polymerization.
Abstract:
The present invention relates to asymmetric catalysts, including redox-reconfigurable asymmetric catalysts. Methods of producing compounds having one or more stereocenters using the asymmetric catalysts of the present invention are also disclosed.
Abstract:
The present invention relates to compounds of the formula (I) and in particular to medicaments comprising at least one compound of the formula (I) for use in the treatment and/or prophylaxis of physiological and/or pathophysiological conditions in the triggering of which cathepsin D is involved, in particular for use in the treatment and/or prophylaxis of osteoarthritis, traumatic cartilage injuries, arthritis, pain, allodynia or hyperalgesia.
Abstract:
A process of preparing a nitroalcohol, e.g., 2-nitro-2-methyl-1-propane, from a nitropolyol, e.g., 2-nitro-2-methyl-1,3-propanediol, the process comprising the step of contacting under hydrogenation conditions the nitropolyol with hydrogen, a hydrogenation catalyst and, optionally, a chelating agent.
Abstract:
Present invention relates to a method of preparing a chiral α- or β-substituted ketone from the corresponding β- or γ-substituted aldehyde, wherein the ketone has formula (I), (III) or (V), and the corresponding aldehyde has formula (II), (IV) or (VI), respectively, the method comprising reacting the aldehyde of formula (II), (IV) or (VI) in the presence of an amine, oxygen and an organic solvent, wherein the reaction is carried out in the absence of a metal-based catalyst or a metal-based oxidant, wherein: R is H, a substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C15 alkenyl, substituted or unsubstituted C2-C15 alkynyl, substituted or unsubstituted C3-C15 cycloalkyl, substituted or unsubstituted C3-C15 cycloalkenyl, substituted or unsubstituted C3-C15 heterocycloalkyl, substituted or unsubstituted C3-C15 heterocycloalkenyl, substituted or unsubstituted C6-C15 aryl, or substituted or unsubstituted C6-C15 heteroaryl; and R′ is H, a substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C15 alkenyl, substituted or unsubstituted C2-C15 alkynyl, substituted or unsubstituted C3-C15 cycloalkyl, substituted or unsubstituted C3-C15 cycloalkenyl, substituted or unsubstituted C3-C15 heterocycloalkyl, substituted or unsubstituted C3-C15 heterocycloalkenyl, substituted or unsubstituted C6-C15 aryl, or substituted or unsubstituted C6-C15 heteroaryl.
Abstract:
A molecular species is covalently attached to elemental carbon by exposing the carbon to a reaction mixture containing a strong base and a compound of the formulaor in which X denotes a covalently attached atom or group capable of forming an X− anion and each Z is a moiety comprising a plurality of atoms, but which does not have a hydrogen atom directly attached to the atom which itself is directly attached to the —CH2X or —CHX group. The carbon substrate may be graphite or carbon nanotubes.
Abstract:
The invention relates to palladium(0)-tris{tri-[3,5-bis(trifluoromethyl)-phenyl]-phosphine} complex of formula (I), as well as to its preparation and use. This compound is outstandingly stable, and can be used as catalyst with excellent results.