Abstract:
A methodology is disclosed to produce nanostructured carbon particles that act as effective reinforcements. The process is conducted in the solid state at close to ambient conditions. The carbon nanostructures produced under this discovery are nanostructured and are synthesized by mechanical means at standard conditions. The benefit of this processing methodology is that those carbon nanostructures can be used as effective reinforcements for composites of various matrices. As example, are to demonstrate its effectiveness the following matrices were including in testing: ceramic, metallic, and polymeric (organic and inorganic), as well as bio-polymers. The reinforcements have been introduced in those matrices at room and elevated temperatures. The raw material is carbon soot that is a byproduct and hence abundant and cheaper than pristine carbon alternatives (e.g. nanotubes, graphene).
Abstract:
An object of the present invention is to provide a rubber composition capable of achieving both good rolling resistance properties and good wear resistance in a compatible manner when the rubber composition is applied to a component member, e.g. tread, of a tire. Specifically, the present invention provides a rubber composition comprising a rubber composition and hydrated silica, wherein “CTAB” (m2/g) as specific surface area by cetyltrimethylammonium bromide adsorption and “IB” as ink bottle-shaped micropore index, of the hydrated silica, satisfy a specific relationship and “weight loss on ignition” (mass %) as weight loss when the hydrate silicate is heated at 750 ° C. for 3 hours and “weight loss on heating” (mass %) as weight loss when the hydrate silicate is heated at 105 ° C. for 2 hours satisfy a specific relationship.
Abstract:
A fluororubber composition comprising 100 parts by weight of a peroxide-crosslinkable tetrafluoroethylene-vinylidene fluoride-hexafluoropropene ternary copolymer rubber having a fluorine content of 64 wt. % or more, (A) 5 to 90 parts by weight of carbon black having a specific surface area of 5 to 20 m2/g, (B) 5 to 40 parts by weight of a fine bituminous powder, (C) at least one of 1 to 20 parts by weight of hydrophilicity-imparted talc and/or 1 to 30 parts by weight of hydrophilicity-imparted clay, and (D) 0.5 to 6 parts by weight of an organic peroxide; the fluororubber composition being used as a molding material for fuel oil sealing materials to be in contact with fuel oil. The fluororubber composition provides a sealing materials having excellent metal corrosion resistance, without compounding an acid acceptor comprising a metal oxide.
Abstract:
Provided are a rubber composition for tire tread, which exhibits excellent cut and chip resistance and also exhibits excellent abrasion resistance and heat generation resistance performances that are in a trade-off relationship with the cut and chip resistance, and a tire produced using the rubber composition. The rubber composition for tire tread has excellent abrasion resistance and cut and chip resistance, and thus a tire produced using the rubber composition for tire tread can be suitably used in buses or trucks.
Abstract:
A method of producing a coagulated latex composite. A coagulating mixture of a first elastomer latex and a particulate filler slurry is flowed along a conduit, and a second elastomer latex is introduced into the flow of the coagulating mixture.
Abstract:
A pneumatic tire has a pair of sidewalls overlying a carcass connecting a pair of bead components and a rubber chafer adjacent to each sidewall, the chafer including 100 parts by weight of elastomer; 20 to 60 phr of a low surface area carbon black having an Iodine absorption value of from about 10 to about 50 g/kg; 20 to 60 phr of a high surface area carbon black having an Iodine absoption value of from about 100 to about 300 g/kg, each sidewall including 100 phr of the same elastomer used in the chafers; 20 to 60 phr of the same low surface area carbon black used in the chafers; 10 to 20 phr of the same high surface area carbon black used in the chafers, the weight ratio of high surface area carbon black in the chafers to high surface area carbon black in the sidewalls being greater than 1.
Abstract:
A surface-treated heavy calcium carbonate is provided which is useful for a film exactly controlled in its pore diameter and for easily hydrolyzable polyester resins. A heavy calcium carbonate is also provided which is compounded in a curable resin such as a one-component moisture-curable adhesive and a sealant either without any pre-drying treatment or by simple pre-drying treatment.A surface-treated heavy calcium carbonate satisfying 13,000≦A≦25,000, 0.8≦B≦3.0, C≧0.55, and 0≦D1≦1000, or 8,000≦A≦25,000, 0.8≦B≦15, 0≦C1≦1000, and 0≦C2≦150wherein:A: specific surface area (cm2/g), B: average particle diameter (μm): 50% particle diameter (d50) (μm), C: 10% particle diameter (μm), D1, C1: water content at between 25° C. and 300° C. by a Karl-Fischer method (heating vaporization method) (ppm), and C2: water content at between 200° C. and 300° C. by the same method.
Abstract:
This invention relates to a tire which contains a pathway for transferring heat within a tire comprised of a heat transfer rubber conduit composed of at least one operational, physically functional, heat conductive tire component. In one embodiment, for a cured rubber tire, the heat transfer rubber conduit is provided as a pathway for transfer of heat generated within the tire to an external surface of the tire for dissipation of the conducted heat. In another embodiment, for an uncured rubber tire, the heat transfer rubber conduit is provided as a pathway to transfer heat applied to an outer surface of the tire to the interior of the tire. The heat conductive tire component(s) of the heat transfer conduit is/are each comprised of a heat conductive rubber composition containing acetylene carbon black. In one embodiment, the heat transfer rubber conduit is provided as a pathway for conduction of heat to or from a less heat conductive rubber component which adjoins at least one of such heat conductive rubber components.
Abstract:
A fluorosilicone rubber composition is provided comprising (A) a fluorosilicone gum having an aliphatic unsaturated monovalent hydrocarbon group content of 0.03-1 mol % based on the total of monovalent hydrocarbon groups and a residual alkali metal content of up to 20 ppm, (B) reinforcing silica having a specific surface area of 50-100 m2/g, and (C) an organic peroxide catalyst. The composition is molded into silicone rubber parts which are improved in compression set even after immersion in ε-caprolactam.
Abstract:
The present invention relates to a transmission belt containing a core wire extending in a lengthwise direction of the belt, an adhesive rubber layer in contact with at least a part of the core wire, a back surface rubber layer formed on one surface of the adhesive rubber layer, and an inner surface rubber layer formed on the other surface of the adhesive rubber layer and engaging or in contact with a pulley, in which the adhesive rubber layer is formed by a vulcanized rubber composition containing a rubber component, a fatty acid amide and a silica.