Abstract:
Embodiments of the present disclosure are related to MEMS devices having a suspended membrane that are secured to and spaced apart from a substrate with a sealed cavity therebetween. The membrane includes openings with sidewalls that are closed by a dielectric material. In various embodiments, the cavity between the membrane and the substrate is formed by removing a sacrificial layer through the openings. In one or more embodiments, the openings in the membrane are closed by depositing the dielectric material on the sidewalls of the openings and the upper surface of the membrane.
Abstract:
A heater design for post-process trimming of thin-film transistors is described. The heater incorporates low sheet-resistance material deposited in non-active connecting regions of the heater to reduce heat generation and power consumption in areas distant from active heating members of the heater. The heating members are proximal to a thin-film resistor. The resistance of the thin-film resistor can be trimmed permanently to a desired value by applying short current pulses to the heater. Optimization of a heater design is described. Trimming currents can be as low as 20 mA.
Abstract:
Embodiments of the present disclosure are related to manufacturing system-in-packages at wafer-level. In particular, various embodiments are directed to adhering a first wafer to a second wafer and adhering solder balls to contact pads of the first wafer. In one embodiment, a first wafer having first and second surfaces is provided. The first wafer includes bond pads located on the first surface that are coupled to a respective semiconductor device located in the first wafer. A second wafer having an electrical component located therein is provided. A conductive adhesive is provided on at least one of the first wafer and the second wafer. Conductive balls are provided on the bond pads on the first surface of the first wafer. The conductive balls and the conductive adhesive are heated to cause the conductive balls to adhere to the bond pad and the conductive adhesive to adhere the first wafer to the second wafer.
Abstract:
An electronic device may include a bottom interconnect layer and an integrated circuit (IC) carried by the bottom interconnect layer. The electronic device may further include an encapsulation material on the bottom interconnect layer and laterally surrounding the IC. The electronic device may further include electrically conductive pillars on the bottom interconnect layer extending through the encapsulation material. At least one electrically conductive pillar and adjacent portions of encapsulation material may have a reduced height with respect to adjacent portions of the IC and the encapsulation material and may define at least one contact recess. The at least one contact recess may be spaced inwardly from a periphery of the encapsulation material.
Abstract:
A surface mount package of a semiconductor device, has: an encapsulation, housing at least one die including semiconductor material; and electrical contact leads, protruding from the encapsulation to be electrically coupled to contact pads of a circuit board; the encapsulation has a main face designed to face a top surface of the circuit board, which is provided with coupling features designed for mechanical coupling to the circuit board to increase a resonant frequency of the mounted package. The coupling features envisage at least a first coupling recess defined within the encapsulation starting from the main face, designed to be engaged by a corresponding coupling element fixed to the circuit board, thereby restricting movements of the mounted package.
Abstract:
A method of forming a transistor is disclosed, in which gate-to-substrate leakage is addressed by forming and maintaining a conformal oxide layer overlying the transistor gate. Using the method disclosed for an n-type device, the conformal oxide layer can be formed as part of the source-drain doping process. Subsequent removal of residual phosphorous dopants from the surface of the oxide layer is accomplished without significant erosion of the oxide layer. The removal step uses a selective deglazing process that employs a hydrolytic reaction, and an acid-base neutralization reaction that includes an ammonium hydroxide component.
Abstract:
The present disclosure is directed to an integrated circuit having a substrate and a first and a second interconnect structure over the substrate. Each interconnect structure has a first conductive layer over the substrate and a second conductive layer over the first conductive layer. The integrated circuit also includes a thin film resistor over a portion of the substrate between the first and the second interconnect structure that electrically connects the first conductive layers of the first and second interconnect structures.
Abstract:
An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.
Abstract:
Ball grid array to pin grid array conversion methods are provided. An example method can include coupling a plurality of solder balls to a respective plurality of pin grid array contact pads. Each of the plurality of solder balls is encapsulated in a fixed material. A portion of the plurality of solder balls and a portion of the fixed material is removed to provide a plurality of exposed solder balls. The exposed solder balls are softened and each of a plurality of pin members is inserted in a softened, exposed, solder ball. The plurality of pin members forms a pin grid array package.
Abstract:
An embedded wafer level ball grid array (eWLB) is formed by embedding a semiconductor die in a molding compound. A trench is formed in the molding compound with a laser drill. A first layer of copper is deposited on the sidewall of the trench by physical vapor deposition. A second layer of copper is then formed on the first layer of copper by an electroless process. A third layer of copper is then formed on the second layer by electroplating.