Abstract:
Voltage generating apparatus includes a positive temperature coefficient current generating module, a negative temperature coefficient current generating module, a fine-tune current module and a voltage output module. The function of the positive temperature coefficient current generating module and the negative temperature coefficient current generating module, which take advantage of characteristics of MOS devices operated in the sub-threshold region, is to generate a stable current of positive temperature coefficient and a stable current of negative temperature coefficient, respectively. The current fine-tune module increases or decreases output current of the negative temperature coefficient current generating module. The voltage output module sums two output currents of the positive temperature coefficient current generating module and the negative temperature coefficient current generating module and transforms the total current into output voltage that is stable under temperature and process variation.
Abstract:
A skid steer vehicle has a sprung suspension system including four wheels mounted on four swing arms that are pivotally coupled to the chassis of the vehicle. An electronic controller is connected both to position sensors coupled to the swing arms to sense the position of the swing arms and wheels with respect to the chassis and also to hydraulic cylinders that control the position of the swing arms and wheels. The electronic controller determines the average position of each suspension and controls the flow of fluid to the cylinders to keep the swing arms and wheels at their proper target height when vehicle load changes.
Abstract:
A skid steer vehicle with sprung suspensions is configured to lock the suspensions whenever the operator manipulates a manual control that generates a signal to move the loader arms or the bucket of the vehicle. The operator control, such as a joystick, sends a signal to an electronic controller indicating that the operator has moved the control and is thereby requesting the loader arms or bucket to move. The electronic controller responds to this signal by moving the loader arms or bucket and simultaneously locking the suspensions.
Abstract:
A multi-level memory cell has a substrate, a first floating gate, a second floating gate and a control gate. A first doped region, a second doped region and a channel region located between the first doped region and the second doped region are provided in the substrate. The first floating gate is located over the channel region near the first doped region. The second floating gate is located over the channel region near the second doped region and isolated from the first floating gate. A control gate is located over the first and the second floating gates. When writing operations are proceeding, the bias voltages of the control gates are the same, and a constant bias voltage is provided on the first doped region or the second doped region depending on which binary states 11, 10, 01 or 00 are to write. Furthermore, the same bias voltage is used on the control gate during writing operation. Thus, the memory per unit chip area is enhanced and the peripheral circuits are simplified.
Abstract:
A machine control system for use with a machine having a power source and a transmission is disclosed. The machine control system may have a clutch configured to connect an output of the power source with an input of the transmission. The machine control system may also have a sensors configured to generate signals indicative of machine operations, and a controller in communication with the clutch and the sensors. The controller may be configured to determine the current machine application based on the signals, and vary an actuating force of the clutch based on the type of machine application.
Abstract:
The invention relates to leadframe semiconductor packages mounted on a heat-sink and fabrication thereof. A system in package (SiP) comprises a leadframe having extension leads, configured with divisional heat sinks serving as power and ground nets. A set of semiconductor dies is attached by adhesive on the central region of the lead frame. Pluralities of wire bonds electrically connect the set of semiconductor dies to the leadframe and to the divisional heat sinks respectively. An encapsulation encloses the leadframe, but leaves the extension leads and the divisional heat sink uncovered, exposing a heat dissipating surface.
Abstract:
A semiconductor chip package is disclosed. The semiconductor chip package comprises a lead frame having a chip carrier, wherein the chip carrier has a first surface and an opposite second surface. A semiconductor chip is mounted on the first surface, having a plurality of bonding pads thereon, wherein the semiconductor chip has an area larger than that of the chip carrier. A package substrate comprises a central region attached to the second surface, having an area larger than that of the semiconductor chip, wherein some of the bonding pads of the semiconductor chip are electrically connected to a marginal region of the package substrate.
Abstract:
A machine control system for use with a machine having a power source and a transmission is disclosed. The machine control system may have a clutch configured to connect an output of the power source with an input of the transmission. The machine control system may also have a sensor configured to generate a signal indicative of a speed of the power source, and a controller in communication with the clutch and the sensor. The controller may be configured to vary an actuating force of the clutch based on the signal.
Abstract:
An overspeed system for a vehicle is disclosed. The overspeed system may have a power source, a transmission unit, and a torque converter assembly operatively coupling the power source to the transmission unit. The overspeed system may also have a travel speed sensor configured to generate a signal indicative of a vehicle speed, and a controller in communication with the torque converter assembly and the travel speed sensor. The controller may be configured to prevent a decoupling of the torque converter assembly in response to the signal.
Abstract:
The invention relates to leadframe semiconductor packages mounted on a heat-sink and fabrication thereof. A system in package (SiP) comprises a leadframe having extension leads, configured with divisional heat sinks serving as power and ground nets. A set of semiconductor dies is attached by adhesive on the central region of the lead frame. Pluralities of wire bonds electrically connect the set of semiconductor dies to the leadframe and to the divisional heat sinks respectively. An encapsulation encloses the leadframe, but leaves the extension leads and the divisional heat sink uncovered, exposing a heat dissipating surface.