Abstract:
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced.
Abstract:
A manufacturing method of a semiconductor device is provided, which includes a process in which a transistor is formed over a first substrate; a process in which a first insulating layer is formed over the transistor; a process in which a first conductive layer connected to a source or a drain of the transistor is formed; a process in which a second substrate provided with a second insulating layer is arranged so that the first insulating layer is attached to the second insulating layer; a process in which the second insulating layer is separated from the second substrate; and a process in which a third substrate provided with a second conductive layer which functions as an antenna is arranged so that the first conductive layer is electrically connected to the second conductive layer.
Abstract:
The area occupied by a photo-sensor element may be reduced and multiple elements may be integrated in a limited area so that the sensor element can have higher output and smaller size. Higher output and miniaturization are achieved by uniting a sensor element using an amorphous semiconductor film (typically an amorphous silicon film) and an output amplifier circuit including a TFT with a semiconductor film having a crystal structure (typically a poly-crystalline silicon film) used as an active layer over a plastic film substrate that can resist the temperature in the process for mounting such as a solder reflow process. A sensor element that can resist bending stress can be obtained.
Abstract:
A transmitter includes an OFDM symbol generator for generating an effective symbol including a plurality of sub-carriers orthogonal to each other in frequency and sequentially generating an OFDM symbol in which a signal in a first period from a first end of the effective symbol is added to a second end of the effective symbol as a guard interval, and a convolution filter for performing an convolution operation on data strings at a plurality of sampling points of the OFDM symbol, wherein when the convolution filter performs a convolution operation on the first data strings including a data string at the first end of the effective symbol, the convolution filter performs the convolution operation on the first data strings in which a data string at the second end of the effective symbol is cyclically added to a data string at the first end.
Abstract:
To provide a transistor having a favorable electric characteristics and high reliability and a display device including the transistor. The transistor is a bottom-gate transistor formed using an oxide semiconductor for a channel region. An oxide semiconductor layer subjected to dehydration or dehydrogenation through heat treatment is used as an active layer. The active layer includes a first region of a superficial portion microcrystallized and a second region of the rest portion. By using the oxide semiconductor layer having such a structure, a change to an n-type, which is attributed to entry of moisture to the superficial portion or elimination of oxygen from the superficial portion, and generation of a parasitic channel can be suppressed. In addition, contact resistance between the oxide semiconductor layer and source and drain electrodes can be reduced.
Abstract:
The invention provides a laminating system in which one of second and third substrates for sealing a thin film integrated circuit is supplied to a first substrate having the plurality of thin film integrated circuit while being extruded in a heated and melted state, and further rollers are used for supplying the other substrate, receiving IC chips, separating, and sealing. Processes of separating the thin film integrated circuits provided over the first substrate, sealing the separated thin film integrated circuits, and receiving the sealed thin film integrated circuits can be continuously carried out by rotating the rollers. Thus, the production efficiency can be extremely improved.
Abstract:
It is an object of the invention to improve the production efficiency in sealing a thin film integrated circuit and to prevent the damage and break. Further, it is another object of the invention to prevent a thin film integrated circuit from being damaged in shipment and to make it easier to handle the thin film integrated circuit. The invention provides a laminating system in which rollers are used for supplying a substrate for sealing, receiving IC chips, separating, and sealing. The separation, sealing, and reception of a plurality of thin film integrated circuits can be carried out continuously by rotating the rollers; thus, the production efficiency can be extremely improved. Further, the thin film integrated circuits can be easily sealed since a pair of rollers opposite to each other is used.
Abstract:
The object of the present invention is to miniaturize the area occupied by the element and to integrate a plenty of elements in a limited area so that the sensor element can have higher output and smaller size.In the present invention, higher output and miniaturization are achieved by uniting a sensor element using an amorphous semiconductor film (typically an amorphous silicon film) and an output amplifier circuit including a TFT with a semiconductor film having a crystal structure (typically a poly-crystalline silicon film) used as an active layer over a plastic film substrate that can resist the temperature in the process for mounting such as a solder reflow process. According to the present invention, the sensor element that can resist the bending stress can be obtained.
Abstract:
It is an object of the invention to improve the production efficiency in sealing a thin film integrated circuit and to prevent the damage and break. Further, it is another object of the invention to prevent a thin film integrated circuit from being damaged in shipment and to make it easier to handle the thin film integrated circuit. The invention provides a laminating system in which rollers are used for supplying a substrate for sealing, receiving IC chips, separating, and sealing. The separation, sealing, and reception of a plurality of thin film integrated circuits can be carried out continuously by rotating the rollers; thus, the production efficiency can be extremely improved. Further, the thin film integrated circuits can be easily sealed since a pair of rollers opposite to each other is used.
Abstract:
It is an object of the present invention to provide a manufacturing method of a semiconductor device where a semiconductor element is prevented from being damaged and throughput speed thereof is improved, even in a case of thinning or removing a supporting substrate after forming the semiconductor element over the supporting substrate. According to one feature of the present invention, a method for manufacturing a semiconductor device includes the steps of forming a plurality of element groups over an upper surface of a substrate; forming an insulating film so as to cover the plurality of element groups; selectively forming an opening to the insulating film which is located in a region between neighboring two element groups in the plurality of element groups to expose the substrate; forming a first film so as to cover the insulating film and the opening; exposing the element groups by removing the substrate; forming a second film so as to cover the surface of the exposed element groups; and cutting off between the plurality of element groups so as not to expose the insulating film.