Abstract:
An electromechanical actuator (11) includes a sealing element (21) provided with a housing (22), an electronic control unit (15) electrically connected to a first electrical connector (23), and a power supply cable (18) including, at one of the ends of same, a second electrical connector (24). The second connector (24) includes an elastic tab (26) provided with a stop element (27) cooperating with a recess (28) provided in the housing (22), and a first bending area (32) provided at the junction between a first end (26a) of the elastic tab (26) and a body (25) of the second connector (24). The stop element (27) is provided at a second free end (26b) of the elastic tab (26). The elastic tab (26) includes a second bending area (33) provided at the junction between an arm (37) and the stop element (27) of the elastic tab (26).
Abstract:
A method for controlling and/or monitoring at least one actuator of a visual or thermal comfort device in a building, includes the steps of: collecting data from a plurality of control points configured to send at least one control order to at least one actuator, the data including, for at least each control point, information relating to an instantaneous measurement value of a physical quantity relating to comfort or to the energy consumption in the building. The measurement value is determined at the location of the control point. The method further includes the step of exploiting the data, wherein the exploitation includes the definition of at least one correspondence between an instantaneous measurement value of a physical quantity and a spatial location of the measurement of the physical quantity in the building.
Abstract:
Remote control device comprising a generator (PVU) intended to convert light or mechanical energy to electrical energy, a wireless transmitter (RF) able to send messages to a remote receiver, a first electrical energy storage element (C1) connected to the energy generator (PVU) and intended to be charged with the electrical energy generated by the generator (PVU) in order to supply power to the wireless transmitter (RF) in a first operating mode of the control device, and a second electrical energy storage element (C2) intended to supply power to the wireless transmitter (RF) in a second operating mode. The second electrical energy storage element is connected to the generator (PVU) via parallel connection of a first resistor (R1) and a first diode (D1), the cathode of the first diode being connected to the positive terminal of the generator (PVU).
Abstract:
A motor-driven carriage (100) for opening/closing a curtain, includes a housing (110) that is provided with two members (124, 126) for suspending the housing from a rail (50), wherein a friction wheel (112), which is driven by an electric motor and which is to contact at least one rolling surface (56, 57) of the rail, is rotatably mounted inside the housing. The carriage (100) also includes a cradle (150) provided with two other members (155, 156) for suspending the cradle from the rail (50), which are separate from the members (124, 126) for suspending the housing (110), as well as elements (153, 154) for coupling to the curtain. The cradle is mounted onto the housing (110) and is driven by the housing when the latter moves along the rail, the housing (110) and the cradle (150) optionally being capable of relative movement there between.
Abstract:
Motorized manoeuvring device (1) intended to manoeuvre a moving windable fabric screen (3), the motorized manoeuvring device comprising: an actuator (4), comprising a hollow housing (41) containing a gear motor, a mounting end-plate (7a), characterized in that the end-plate (7a) comprises a first support (11) extending from the end-plate along a first longitudinal axis (X-X′) and cooperating with the housing (41) of the actuator (4) and in that it comprises a second support (12) extending from the end-plate along a second axis distinct from the first (Ya-Ya′, Z-Z′) and in that the hollow housing, notably the tubular hollow housing, of the actuator, is closed by the first end-plate support.
Abstract:
The invention relates to a device (32) for manually actuating a piece of closing or sun protection equipment (10), in particular of the blinds or rolling shutters type, including a stationary case (42) having two aligned bearings (44) defining an axis of rotation (200), a worm (34) guided in rotation in the bearings (44) and a driving rod (54) to rotate the worm (34). The worm (34) being passed through by an axial hole (52), the driving rod (54) being able to be inserted in the axial hole (52) by securing the driving rod (54) in rotation with the worm (34). A snapping connection between an elastically deformable staple (56) and a bearing shoulder (64) allows the insertion of the driving rod (54) into the axial hole (52), and blocking the removal of the driving rod (54) inserted into the axial hole (52).
Abstract:
A method for operating an installation for the automated control of the conditions in a building, the installation comprising a central control unit, electrical equipment items with which areas of the building are equipped and a unit for managing sensors comprising at least one sensor suitable for measuring an input physical quantity, the method being characterized in that it comprises: a step of modelling the building and the areas of the building, a step of obtaining at least one first value of the input physical quantity measured by the at least one sensor, a step of iteratively determining values of at least one output physical quantity, as a function of at least one second value of the input physical quantity, of the model of the building and of the areas of the building, a step of using the determined values in order to control the electrical equipment items with which each area of the building is equipped.
Abstract:
This bowl (10) for an induction motor intended to be housed in the hollow body of a substantially longitudinal actuator for winding/unwinding sheets, screens, blinds or roller shutters, comprises an outer skirt (12) and an inner skirt (13), the outer skirt (12) and the inner skirt (13) defining, between them, a space (14) intended to receive a lead-out of a stator of the induction motor. Moreover, the inner skirt (13) is capable of being deformed in such a way as to restrict the space (14) between the inner skirt (13) and the outer skirt (12) in order to allow the insertion into the inner skirt (13) of means of supporting a rotor assembly.
Abstract:
A communication method for a home automation actuator comprising an electric motor driving a moving element in a building and two electric terminals making it possible to power the actuator by a power supply and communication entity (IMS) and allowing communication between the actuator and the power supply and communication entity (IMS), the method comprising the following steps: analysis of a power supply signal supplied by the power supply and communication entity; generation of a first time-sequence of a response signal, representative of a first predetermined calibration information element, called first calibration sequence; sending of a series of time-sequences of the response signal, representative of a series of information elements, each information element of this series, equal to the calibration information element, being represented by a time-sequence which is an image of the first calibration sequence.