Abstract:
Disclosed is method for removing carbonyl sulphide and/or carbon disulphide from a sour gas stream. The method comprises subjecting the gas stream to simultaneous contact with an absorption liquid, such as an aqueous amine solution, and with a catalyst suitable for hydrolyzing carbonyl sulphide and/or carbon disulphide. To this end, the invention also provides a reactor system wherein both an absorption liquid and a catalyst are present. In a preferred embodiment, the catalyst is a heterogeneous catalyst present on or in an absorption column, either coated on the trays of a column with trays, or contained in the packing of a packed column.
Abstract:
Disclosed is a method for the production of hydrogen from a H2S-containing gas stream also containing ammonia, comprising subjecting both gas stream to catalytic oxidative cracking of both the H2S and the NH3, so as to form H2, S2 and N2. In this method, preferably, an additional amount of oxygen is added as compared to the amount used for H2S catalytic oxidative cracking. Also, preferably, the contact time of the gas stream with the catalyst is increased. The catalyst preferably is provided as a single bed, and then preferably comprises iron and molybdenum supported by a carrier comprising aluminum. The preferred carrier is alumina. The iron and molybdenum preferably are in the form of sulfides.
Abstract:
Disclosed is a catalyst suitable for the catalytic oxidative cracking of a H2S-containing gas stream, particularly in the event that the stream also contains methane and/or ammonia. The catalyst comprises iron and molybdenum supported by a carrier comprising aluminium. The carrier preferably is alumina. The iron and molybdenum preferably are in the form of sulphides. Also disclosed is a method for the production of hydrogen from a H2S-containing gas stream, comprising subjecting the gas stream to catalytic oxidative cracking so as to form H2 and S2, using a catalyst in accordance with any one of the preceding claims.
Abstract:
A reformer furnace (1), comprising: at least one triple conduit assembly (200), including a flue gas conduit (220) enclosing a reaction conduit (240) enclosing a product gas conduit (260), wherein: the reaction conduit (240) extends between a lower end (244) defining a reaction gas inlet (245), and a closed upper end (242); the product gas conduit (260) extends between an upper end (262) defining a product gas inlet (263), and a lower end (264) defining a product gas outlet (265); the flue gas conduit (220) extends between an upper end (222) defining a flue gas inlet (223), and a lower end (224) defining a flue gas outlet (225); and an annulus (250) between the reaction conduit (240) and the product gas conduit (260) comprises a catalyst (252); a combustion chamber (100) that encloses an approximate upper half (226, 246, 266) of the at least one triple conduit assembly (200) while an approximate lower half (228, 248, 268) thereof resides outside of and below the combustion chamber, and that includes at least one burner (110), disposed inside of the combustion chamber and outside of the flue gas conduit (220), such that the approximate upper half (226) of the flue gas conduit substantially shields the reaction conduit (240) from direct burner flame heat radiation and impingement.
Abstract:
The present invention relates to a plant for performing a method for hydrogen production or for performing a method of hydrogen and/or carbon dioxide production from syngas. The method comprises the steps of: (i) providing a gas stream comprising hydrogen and carbon monoxide, (ii) separating at least part of hydrogen from the stream yielding a hydrogen-depleted stream, (iii) subjecting the hydrogen-depleted stream to a water-gas shift reaction, and (iv) separating hydrogen from the stream resulting from step (iii).
Abstract:
A back-up boiler system for a solar thermal power plant (201) for transferring solar energy into electricity, said back-up boiler system comprising a combustion chamber (70) and a convection section (80) in fluid connection with said combustion chamber (70), wherein in the convection section (80) at least a first heat exchanger (92) is provided for heating a molten salts mixture of the solar thermal power plant and a second heat exchanger (90) for pre-heating boiler feed water of the solar thermal power plant, wherein the back-up boiler system (25) is configured to allow selection between only providing heat to the first heat exchanger (92), only providing heat to the second heat exchanger (90) and providing heat to both heat exchangers (90, 92), preferably dependent on availability of solar radiation and/or dependent on demand of power generation. The invention also relates to a solar thermal power plant (201) for transferring solar energy into electricity and a method for operating a solar thermal power plant.
Abstract:
The invention is directed to a process for the removal of ammonia from an ammonia-containing gas stream by treating the ammonia in the ammonia-containing gas stream with an acid, during which treatment an aqueous stream comprising an ammonium salt, wherein the aqueous stream comprising the ammonium salt is treated with electrodialysis, whereby the acid is recovered and an aqueos stream comprising an ammonium hydroxide salt is formed.
Abstract:
The invention pertains to a method of making urea-containing particles wherein with a lower degree of cooling, high mechanical strengths are obtained. The method comprises the steps of (a) providing a first polymer 10 layer; (b) feeding urea droplets onto said first polymer layer, (c) cooling the droplets provided on the first polymer layer to a temperature between 55° C. and 120° C.; (d) applying a second polymer layer onto the first polymer layer comprising the droplets so as to form encapsulated urea droplets; and (e) separating the encapsulated urea droplets.
Abstract:
The invention relates to a method for recovery of urea dust and ammonia from a gas stream by contacting said gas stream with an aqueous sulphuric acid solution, thus forming an acid solution of ammonium sulphate and urea, characterized in that the acid solution is concentrated to a melt comprising less than 5 wt % of water, which melt is subsequently transferred into solid particles comprising urea and ammonium sulphate.
Abstract:
A process for the preparation of cycloalkanones and/or cycloalkanols by catalytic hydrogenation of cycloalkyl hydroperoxides is disclosed. In the invented process use is made of a finely divided catalyst that is suspended in the reaction mixture and contains one or more noble metals from Group VIII of the Periodic System of Elements, preferably rhodium, platinum and/or palladium. With the invented process a high reaction rate can be achieved already at a low reaction temperaturue and a low hydrogen pressure, while the desired products are obtained in a high yield. Very little catalyst is needed for achieving a given rate of reaction. The invention permits advantageous application of catalysts with very high noble-metal concentrations. Favourable alcohol/ketone ratios can be achieved. The invention also offers solutions for specific problems which may occur in performing the invented process. Advantageous incorporation of the invented process into an overall process for the preparation of cycloalkanols and/or cycloalkanones from a cycloalkane via a cycloalkyl hydroperoxide is disclosed.