Abstract:
A semiconductor memory device with a variable resistance element includes a plurality of active areas isolated from one another by an isolation layer formed in a substrate, a plurality of word lines crossing over the plurality of active areas, an auxiliary source line disposed between two selected word lines and commonly connected to at least two active areas among the plurality of active areas between the two selected word lines, and a plurality of contact plugs each connected to a corresponding active area.
Abstract:
A semiconductor package includes a first structural body having a first surface and a second surface which faces away from the first surface, and formed with first connection members on the first surface; a second structural body placed over the first structural body, and formed with second connection members on a surface thereof which faces the first surface of the first structural body; and an interposer interposed between the first structural body and the second structural body, and having a body which is formed with openings into which the first connection members and the second connection members are inserted and a conductive layer which is formed to fill the openings.
Abstract:
A stacked wafer level package includes a first semiconductor chip having a first bonding pad and a second semiconductor chip having a second bonding pad. Both bonding pads of the semiconductor chips face the same direction. The second semiconductor chip is disposed in parallel to the first semiconductor chip. A third semiconductor chip is disposed over the first and second semiconductor chips acting as a supporting substrate. The third semiconductor chip has a third bonding pad that is exposed between the first and the second semiconductor chips upon attachment. Finally, a redistribution structure is electrically connected to the first, second, and third bonding pads.
Abstract:
A method for manufacturing a semiconductor memory device includes forming a magnetic tunnel junction layer on a lower electrode, forming a spacer having an annular shape on the magnetic tunnel junction layer, forming upper electrodes on both sidewall surfaces of the annular shaped spacer, removing the spacer, and etching the magnetic tunnel junction layer by using the upper electrodes as an etch mask.
Abstract:
A memory device includes a first electrode, a second electrode spaced apart from the first electrode and a nanotube or nanowire network disposed between the first electrode and the second electrode, having a stacked structure of a P-type network and an N-type network, and having a diode characteristic. Since the nanotube or nanowire network has the stacked structure of the P-type network and the N-type network, and has the diode characteristic, it is possible to enhance a degree of integration of the memory device and simplify the fabrication processes without separately requiring a selection device.
Abstract:
The present invention relates to an apparatus and a method for scheduling multiple bursts containing a collaborative spatial multiplexing (CSM) burst and a non-CSM burst in a broadband radio communication system. The method comprises the steps of packet-scheduling an uplink data packet corresponding to the bandwidth request from a terminal such that the packet is allocated to either the CSM burst or the non-CSM burst, determining a modulation and coding scheme (MCS) level and a transmission power level corresponding to the packet-scheduled uplink data packet using the maximum number of bytes for each MCS level in accordance with the types of the multiple bursts calculated for the terminal, determining a transmission power offset in accordance with the type of the burst to which the packet-scheduled uplink data packet is allocated using the MCS level and the power transmission level determined in the previous step, and generating MAP information for the terminal, containing burst allocation information of the uplink data packet and information of the transmission power offset determined in the previous step.
Abstract:
A stacked semiconductor package and a method for manufacturing the same are presented which exhibit a reduced electrical resistance and an increased junction force. The semiconductor package includes at least two semiconductor chips stacked upon each other. Each semiconductor chip has a plurality of bonding pads formed on upper surfaces and has via-holes. First wiring lines are located on the upper surfaces of the semiconductor chips, on the surfaces of the via-holes, and respectively connected onto their respective bonding pads. Second wiring lines are located on lower surfaces of the semiconductor chips and on the surfaces of the respective via-holes which connect to their respective first wiring lines. The semiconductor chips are stacked so that the first wiring lines on an upper surface of an upwardly positioned semiconductor chip are respectively joined with corresponding second wiring lines formed on a lower surface of a downwardly positioned semiconductor chip.
Abstract:
A semiconductor device comprises an active region having an upper portion and a sidewall portion which are protruded from the top surface of a device isolation region, and a silicide film disposed in the upper portion and the sidewall portion of the active region, thereby effectively reducing resistance in a source/drain region of the semiconductor device. As a result, the entire resistance of the semiconductor device comprising a fin-type gate can be reduced to improve characteristics of the semiconductor device.
Abstract:
An apparatus and a method for operating an Automatic Repeat reQuest (ARQ) in consideration of an operation state of a Hybrid Automatic Repeat reQuest (HARQ) in a wireless communication system. In the method, when an an ARQ timer expires, operation state information of a HARQ module for controlling a HARQ is determined. Whether to delay generation of Negative ACKnowledge (NACK) information in consideration of the operation state information of the HARQ module, then determined. When determining to delay the generation of the NACK information, the generation of the NACK information is delayed for a delay time determined in consideration of the operation state information of the HARQ module.