Abstract:
The present invention discloses a barrier-overpassing transporter, which comprises: a support frame carrying a rider or another load; a sensing/adjusting module detecting a tilting state of the support frame and maintaining the support frame in a horizontal state; a ground contact module arranged below the support frame supporting an effective load and lifting the support frame to overpass a surface of a barrier; and a wireless transceiver module collecting and transmitting information to enable adjustments and activities responding to interior states of the transporter. Thereby, the present invention can provide a safe, stable, reliable, comfortable, convenient and low-cost barrier-overpassing transporter.
Abstract:
A digital camera module package method includes the steps of: firstly, providing a carrier (30), which includes a base (24) and a leadframe (320). The base has a cavity therein and the leadframe includes a number of conductive pieces (322); Secondly, mounting an image sensor chip (34) on the base and received in the cavity, the image sensor having a photosensitive area. Thirdly, providing a plurality of wires (36), each electrically connecting the image sensor chip and a corresponding one of the conductive pieces of the carrier. Fourthly, applying an adhesive means (3262) around the image sensor chip that at least partially covers all the wires. Finally, mounting a transparent cover (38) on the carrier, where an adhesive means fixes the cover in place.
Abstract:
A multi-domain liquid crystal display includes a first and a second substrates, and a liquid crystal layer is interposed between the first and the second substrates. A first common electrode is formed on an entire surface of the first substrate. A first dielectric layer is formed on the second substrate and covers first signal lines, and a second dielectric layer is formed on the first dielectric layer and covers second signal lines. A plurality of pixel electrodes are formed on the second dielectric layer, and a plurality of second common electrodes are formed on the second substrate, where a voltage difference existing between the second common electrodes and the pixel electrode produces fringe fields.
Abstract:
An image sensor chip package method includes the following steps: firstly, a plurality of shaped conductors are provided. Secondly, plastics are injected to partially enclose the conductors, thereby forming a base. Some of the conductors are exposed outside of the base. Thirdly, a ring-like middle portion is further formed on the base by means of injection. The base and the middle portion cooperatively form a space. Fourthly, an image sensor having a plurality of pads is disposed in the space. Fifthly, a number of bonding wires are provided to connect the pads and the conductors. Finally, a cover is secured to the top of the middle portion via an adhesive glue, thereby hermetically sealing the space and allowing light beams to pass therethrough.
Abstract:
A biological suspension processing system is disclosed that may include a suspension treatment device for treating one or more components of a biological suspension, a first fluid flow path for introducing a suspension into the treatment device and a second fluid flow path for withdrawing a constituent of the suspension from the device. At least on microelectromechanical (MEM) sensor communicates with one of the fluid flow paths for sensing a selected characteristic of the fluid therewith. The MEM sensor may be located elsewhere, such as on a container or bag and communicate with the interior for sensing a characteristic of the fluid contained therein. A wide variety of characteristics may be sensed, such as flow rate, pH, cell type, cell antigenicity, DNA, viral or bacterial presence, cholesterol, hematocrit, cell concentration, cell count, partial pressure, pathogen presence, or viscosity.
Abstract:
A biological suspension processing system is disclosed that may include a suspension treatment device for treating one or more components of a biological suspension, a first fluid flow path for introducing a suspension into the treatment device and a second fluid flow path for withdrawing a constituent of the suspension from the device. At least one microelectromechanical (MEM) sensor communicates with one of the fluid flow paths for sensing a selected characteristic of the fluid therewith. The MEM sensor may be located elsewhere, such as on a container or bag and communicate with the interior for sensing a characteristic of the fluid contained therein. A wide variety of characteristics may be sensed, such as flow rate, pH, cell type, cell antigenicity, DNA, viral or bacterial presence, cholesterol, hematocrit, cell concentration, cell count, partial pressure, pathogen presence, or viscosity.
Abstract:
A smart-tag housing and method for securing a dedicated data card affixed to a SMIF-pod. A molded housing package for holding a data card for communication with a two-way receiver/transmitter mounted on a workstation, the smart-tag is a small battery operated microcomputer with an LCD for a two-way electromagnetic communications. The smart-tag housing includes a battery compartment, a battery compartment cover. A retaining plate is affixed to a side of the pod using double-sided adhesive tape. The smart-tag is demountably secured to the retaining plate with a slidable self locking plate. The self locking plate is unlocked with a key that is provided only to authorized personnel.
Abstract:
A method for fabricating a floating gate with multiple tips. A semiconductor substrate is provided, on which an insulating layer and a patterned hard mask layer are sequentially formed. The patterned hard mask layer has an opening to expose the surface of the semiconductor substrate. A conducting layer is conformally formed on the patterned hard mask layer, and the opening is filled with the conducting layer. The conducting layer is planarized to expose the surface of the patterned hard mask layer. The conducting layer is thermally oxidized to form an oxide layer, and the patterned hard mask layer is removed.
Abstract:
A vertical DRAM and fabrication method thereof. The vertical DRAM has a plurality of memory cells on a substrate, and each of the memory cells has a trench capacitor, a vertical transistor, and a source-isolation oxide layer in a deep trench. The main advantage of the present invention is to form an annular source diffusion and an annular drain diffusion of the vertical transistor around the sidewall of the deep trench. As a result, when a gate of the transistor is turned on, an annular gate channel is provided. The width of the gate channel of the present invention is therefore increased.
Abstract:
A stacked gate vertical flash memory and a fabrication method thereof. The stacked gate vertical flash memory comprises a semiconductor substrate with a trench, a source conducting layer formed on the bottom of the trench, an insulating layer formed on the source conducting layer, a gate dielectric layer formed on a sidewall of the trench, a conducting spacer covering the gate dielectric layer as a floating gate, an inter-gate dielectric layer covering the conducting spacer, and a control gate conducting layer filled in the trench.