Abstract:
Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. In one embodiment, a major axis of the processing volume is oriented vertically and a minor axis of the processing volume is oriented horizontally. One or more electrodes may be disposed adjacent the processing volume and at least partially define the processing volume. Process fluid is provided to the processing volume via a plurality of fluid conduits to facilitate immersion field guided post exposure bake processes. A plurality of seals maintains the fluid containment integrity of the processing volume during processing. A post process chamber for rinsing, developing, and drying a substrate is also provided.
Abstract:
An electro-processing apparatus has a contact ring including a seal which is able to compensate for electric field distortions created by a notch (or other irregularity) on the wafer or work piece. The shape of the contact ring at the notch is changed, to reduce current crowding at the notch. The change in shape changes the resistance of the current path between a thief electrode and the wafer edge to increase thief electrode current drawn from the region of the notch. As a result, the wafer is plated with a film having more uniform thickness.
Abstract:
In electroplating apparatus, a paddle or agitator agitates electrolyte in a vessel to provide high velocity fluid flow at the surface of a wafer. The agitator is designed and/or moved to also selectively shield part of the wafer, for example the edge of the wafer, from the electric field in the vessel. Selectively shielding may be achieved by temporally shifting the average position of the agitator towards one side of the wafer, by omitting or shortening slots in the agitator, and/or by synchronizing movement of the agitator with rotation of the wafer.
Abstract:
Electroplating apparatus agitates electrolyte to provide high velocity fluid flows at the surface of a wafer. The apparatus includes a paddle which provides uniform high mass transfer over the entire wafer, even with a relatively large gap between the paddle and the wafer. Consequently, the processor may have an electric field shield positioned between the paddle and the wafer for effective shielding at the edges of the wafer. The influence of the paddle on the electric field across the wafer is reduced as the paddle is spaced relatively farther from the wafer.
Abstract:
An electroplating apparatus has one or more membrane tube rings which act as electric field shields, to provide advantageous plating characteristics at the perimeter of a work piece. The membrane tube rings may be filled with fluids having different conductivity, to change the shielding effect as desired for electroplating different types of substrates. The membrane tube rings may optionally be provided in or on a diffuser plate in the vessel of the apparatus.
Abstract:
An electroplating apparatus has a vessel for holding electrolyte. A head has a rotor including a contact ring for holding a wafer having a notch. The contact ring includes a perimeter voltage ring having perimeter contact fingers for contacting the wafer around the perimeter of the wafer, except at the notch. The contact ring also has a notch contact segment having one or more notch contact fingers for contacting the wafer at the notch. The perimeter voltage ring is insulated from the notch contact segment. A negative voltage source is connected to the perimeter voltage ring, and a positive voltage source connected to the notch contact segment. The positive voltage applied at the notch reduces the current crowding effect at the notch. The wafer is plated with a film having more uniform thickness.
Abstract:
An electroplating system includes a processor has a vessel having a first or upper compartment and a second or lower compartment containing catholyte and anolyte, respectively, with an processor anionic membrane between them. An inert anode is located in the second compartment. A replenisher is connected to the vessel via catholyte return and supply lines and anolyte return and supply lines, to circulate catholyte and anolyte through compartments in the replenisher separated by a replenisher anionic membrane. The replenisher adds metal ions into the catholyte by moving ions from a bulk metal source, and moves anions from the anolyte through the anionic membrane and into the catholyte. Concentrations or metal ions and anions in the catholyte and the anolyte remain balanced.
Abstract:
An electro-processing apparatus has a contact ring including a seal which is able to compensate for electric field distortions created by a notch (or other irregularity) on the wafer or work piece. The shape of the contact ring at the notch is changed, to reduce current crowding at the notch. The change in shape changes the resistance of the current path between a thief electrode and the wafer edge to increase thief electrode current drawn from the region of the notch. As a result, the wafer is plated with a film having more uniform thickness.
Abstract:
An anneal module for annealing semiconductor material wafers and similar substrates reduces particle contamination and oxygen ingress while providing uniform heating including for 500° C. processes. The anneal module may include a process chamber formed in a metal body having internal cooling lines. A hot plate has a pedestal supported on a thermal choke on the body. A gas distributor in the lid over the hot plate flows gas uniformly over the wafer. A transfer mechanism moves a hoop to shift the wafer between the hot plate and a cold plate.
Abstract:
Systems and methods for electroplating are described. The electroplating system may include a vessel configured to hold a first portion of a liquid electrolyte. The system may also include a substrate holder configured for holding a substrate in the vessel. The system may further include a first reservoir in fluid communication with the vessel. In addition, the system may include a second reservoir in fluid communication with the vessel. Furthermore, the system may include a first mechanism configured to expel a second portion of the liquid electrolyte from the first reservoir into the vessel. The system may also include a second mechanism configured to take in a third potion of the liquid electrolyte from the vessel into the second reservoir when the second portion of the liquid electrolyte is expelled from the first reservoir. Methods may include oscillating flow of the electrolyte within the vessel.