Abstract:
Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and/or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.
Abstract:
A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
Abstract:
Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
Abstract:
Methods are described for forming a dielectric layer on a patterned substrate. The methods may include combining a silicon-and-carbon-containing precursor and a radical oxygen precursor in a plasma free substrate processing region within a chemical vapor deposition chamber. The silicon-and-carbon-containing precursor and the radical oxygen precursor react in to deposit a flowable silicon-carbon-oxygen layer on the patterned substrate. The resulting film possesses a low wet etch rate ratio relative to thermal silicon oxide and other standard dielectrics.
Abstract:
Methods are described herein for selectively etching titanium nitride relative to dielectric films, which may include, for example, alternative metals and metal oxides lacking in titanium and/or silicon-containing films (e.g. silicon oxide, silicon carbon nitride and low-K dielectric films). The methods include a remote plasma etch formed from a chlorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride. The plasma effluents react with exposed surfaces and selectively remove titanium nitride while very slowly removing the other exposed materials. The substrate processing region may also contain a plasma to facilitate breaking through any titanium oxide layer present on the titanium nitride. The plasma in the substrate processing region may be gently biased relative to the substrate to enhance removal rate of the titanium oxide layer.
Abstract:
Methods of etching a patterned substrate may include flowing an oxygen-containing precursor into a first remote plasma region fluidly coupled with a substrate processing region. The oxygen-containing precursor may be flowed into the region while forming a plasma in the first remote plasma region to produce oxygen-containing plasma effluents. The methods may also include flowing a fluorine-containing precursor into a second remote plasma region fluidly coupled with the substrate processing region while forming a plasma in the second remote plasma region to produce fluorine-containing plasma effluents. The methods may include flowing the oxygen-containing plasma effluents and fluorine-containing plasma effluents into the processing region, and using the effluents to etch a patterned substrate housed in the substrate processing region.
Abstract:
Methods of selectively etching tungsten relative to silicon-containing films (e.g. silicon oxide, silicon carbon nitride and (poly)silicon) as well as tungsten oxide are described. The methods include a remote plasma etch formed from a fluorine-containing precursor and/or hydrogen (H2). Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the tungsten. The plasma effluents react with exposed surfaces and selectively remove tungsten while very slowly removing other exposed materials. Sequential and simultaneous methods are included to remove thin tungsten oxide which may, for example, result from exposure to the atmosphere.
Abstract:
A method of etching exposed silicon oxide on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents combine with a nitrogen-and-hydrogen-containing precursor. Reactants thereby produced etch the patterned heterogeneous structures with high silicon oxide selectivity while the substrate is at high temperature compared to typical Siconi™ processes. The etch proceeds without producing residue on the substrate surface. The methods may be used to remove silicon oxide while removing little or no silicon, polysilicon, silicon nitride or titanium nitride.
Abstract:
A method of forming a dielectric layer is described. The method deposits a silicon-containing film by chemical vapor deposition using a local plasma. The silicon-containing film is flowable during deposition at low substrate temperature. A silicon precursor (e.g. a silylamine, higher order silane or halogenated silane) is delivered to the substrate processing region and excited in a local plasma. A second plasma vapor or gas is combined with the silicon precursor in the substrate processing region and may include ammonia, nitrogen (N2), argon, hydrogen (H2) and/or oxygen (O2). The equipment configurations disclosed herein in combination with these vapor/gas combinations have been found to result in flowable deposition at substrate temperatures below or about 200° C. when a local plasma is excited using relatively low power.
Abstract:
Methods of removing residual polymer from vertical walls of a patterned dielectric layer are described. The methods involve the use of a gas phase etch to remove the residual polymer without substantially disturbing the patterned dielectric layer. The gas phase etch may be used on a patterned low-k dielectric layer and may maintain the low dielectric constant of the patterned dielectric layer. The gas phase etch may further avoid stressing the patterned low-k dielectric layer by avoiding the use of liquid etchants whose surface tension can upset delicate low-K features. The gas phase etch may further avoid the formation of solid etch by-products which cars also deform the delicate features.