Abstract:
According to one aspect, a waveguide includes a body exhibiting a total internal reflectance characteristic and having a first face and a second face opposite the first face wherein the first and second faces extend along a lateral direction and a coupling cavity adapted to receive a light emitting diode (LED) that is configured to direct light into the body. The body additionally includes an extraction feature disposed on one of the first and second faces and configured to direct light traveling through the body out of at least one of the first and second faces. The body further includes a redirection feature disposed at least in part between the first and second faces and disposed between the coupling cavity and the extraction feature along the lateral direction, and configured to redirect light traveling through the body laterally within the body.
Abstract:
An optical waveguide includes a body of optically transmissive material having a width substantially greater than an overall thickness thereof. The body of material has a first side, a second side opposite the first side, and a plurality of interior bores extending between the first and second sides each adapted to receive a light emitting diode. Extraction features are disposed on the second side and the extraction features direct light out of at least the first side and at least one extraction feature forms a taper disposed at an outer portion of the body.
Abstract:
An optical waveguide includes a body of optically transmissive material having a width substantially greater than an overall thickness thereof. The body of material has a first side, a second side opposite the first side, and a plurality of interior bores extending between the first and second sides each adapted to receive a light emitting diode. Extraction features are disposed on the second side and the extraction features direct light out of at least the first side and at least one extraction feature forms a taper disposed at an outer portion of the body.
Abstract:
A waveguide body comprises a central section, first and second side sections, and a coupling portion located in the central section. Each of said side sections extend away from the central section along opposing first and second directions, respectively. The coupling portion includes an elongate coupling cavity symmetric about a plane extending in a third direction transverse to the first and second directions and configured to receive a light source. The coupling portion includes a control surface configured to collimate a portion of light emitted from the light source into at least one substantially collimated ray group. Light is emitted above and below the waveguide body. A portion of the light is emitted above and below the waveguide body at an angle other than parallel to an optical axis of the light source.
Abstract:
A luminaire comprises at least one waveguide having a first region that emits a first luminous intensity pattern and a second region that emits a second luminous intensity pattern different from the first luminous intensity pattern. The luminaire further includes a plurality of LED elements and circuitry to control the plurality of LED elements to cause the luminaire to produce a selected one of a plurality of luminous intensity patterns.
Abstract:
A method and apparatus for coating a plurality of semiconductor devices that is particularly adapted to coating LEDs with a coating material containing conversion particles. One method according to the invention comprises providing a mold with a formation cavity. A plurality of semiconductor devices are mounted within the mold formation cavity and a curable coating material is injected or otherwise introduced into the mold to fill the mold formation cavity and at least partially cover the semiconductor devices. The coating material is cured so that the semiconductor devices are at least partially embedded in the cured coating material. The cured coating material with the embedded semiconductor devices is removed from the formation cavity. The semiconductor devices are separated so that each is at least partially covered by a layer of the cured coating material. One embodiment of an apparatus according to the invention for coating a plurality of semiconductor devices comprises a mold housing having a formation cavity arranged to hold semiconductor devices. The formation cavity is also arranged so that a curable coating material can be injected into and fills the formation cavity to at least partially covering the semiconductor devices.
Abstract:
LED packages are disclosed that are compact and efficiently emit light, and can comprise encapsulants with planar surfaces that refract and/or reflect light within the package encapsulant. The packages can comprise a submount with a plurality of LEDs, which emit different colors of light, and a blanket conversion material layer on the LEDs and the submount. The encapsulant can be on the submount, over the LEDs, and light reflected within the encapsulant will reach the conversion material to be absorbed and emitted omnidirectionally. Reflected light can now escape the encapsulant, allowing for efficient emission and a broader emission profile, when compared to conventional packages with hemispheric encapsulants or lenses. The LED package can have a higher chip area to LED package area ratio. By using an encapsulant with planar surfaces, the LED package provides unique dimensional relationships between the features and LED package ratios, enabling more flexibility with different applications.
Abstract:
Lamps and bulbs are disclosed generally comprising different combinations and arrangements of a light source, a reflective optical element, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of an arrangement of LEDs. The lamps according to the present invention can also comprise thermal management features that provide for efficient dissipation of heat from the LEDs, which in turn allows the LEDs to operate at lower temperatures. The lamps can also comprise optical elements to help change the emission pattern from the generally directional pattern of the LEDs to a more omni-directional pattern.
Abstract:
According to one aspect, a waveguide comprises a waveguide body having a coupling cavity defined by a coupling feature disposed within the waveguide body. A plug member comprises a first portion disposed in the coupling cavity and an outer surface substantially conforming to the coupling feature and a second portion extending from the first portion into the coupling cavity. The second portion includes a reflective surface adapted to direct light in the coupling cavity into the waveguide body.
Abstract:
A luminaire comprises at least one waveguide having a first region that emits a first luminous intensity pattern and a second region that emits a second luminous intensity pattern different from the first luminous intensity pattern. The luminaire further includes a plurality of LED elements and circuitry to control the plurality of LED elements to cause the luminaire to produce a selected one of a plurality of luminous intensity patterns.