摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
A thin-stacked ball grid array (BGA) package is created by coupling a semi-conducting die to each of the opposing faces of an interposer having bond pads and circuitry on both faces. Solder balls on either side of each die and/or the interposer provide interconnects for stacking packages and also provide interconnects for module mounting. Each die may be electrically coupled to the interposer using wire bonds, “flip-chip” techniques, or other techniques as appropriate. A redistribution layer may also be formed on the outer surface of a bumped die to create connections between the die circuitry, ball pads and/or wire bonding pads. Because the two die are coupled to each other on opposite faces of the interposer, each package is extremely space-efficient. Individual packages may be stacked together prior to encapsulation or molding to further improve the stability and manufacturability of the stacked package.
摘要:
An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C. Advantageously, the instant setting adhesive composition can be screen printed on a semiconductor wafer prior to singulation because streets between the dice are essentially free of the instant setting adhesive composition.
摘要:
A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
摘要:
A method and apparatus for encapsulating a microelectronic substrate. In one embodiment, the apparatus can include a mold having an internal volume with a first portion configured to receive the microelectronic substrate coupled to a second portion configured to receive a pellet for encapsulating the microelectronic substrate. A plunger moves axially in the second portion to force the pellet into the first portion and around the microelectronic substrate. The pellet has overall external dimensions approximately the same as a conventional pellet, but has cavities or other features that reduce the volume of the pellet and the amount of pellet waste material left after the pellet encapsulates the microelectronic substrate. Accordingly, the pellet can be used with existing pellet handling machines. The mold and/or the plunger can have protrusions and/or other shape features that reduce the size of the first portion of the internal volume. In one aspect of this embodiment, the protrusions can be shaped to fit within the cavities of the pellet.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die-attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
A ball grid array assembly includes a package cover that encapsulates a die and a portion of a substrate to which the die is attached, including an edge of the substrate. Encapsulation of the substrate edge by the cover reduces penetration of moisture or other contaminants into the substrate. The cover includes a rib that extends to contact a circuit board to which the ball grid array assembly is connected. With such a rib, planarity between the circuit board and the substrate is maintained during soldering.