Abstract:
The present disclosure provides a process and resultant composition. In an embodiment, the process includes providing an ethylene/propylene/non-conjugated polyene terpolymer (EPDM) having at least 3.5 wt % non-conjugated polyene. The process includes reacting the EPDM with a metal-Lewis acid, and forming a rheology-modified EPDM. The rheology-modified EPDM has (i) a z average molecular weight (Mz) from greater than 500,000 g/mole to 10,000,000 g/mole, (ii) a Mz/Mw from 3 to 10, (iii) a g value from 0.4 to 1.0, (iv) a z value from 1.0 to 3.5, (v) a Mooney viscosity from 50 to 150, and (vi) a tan delta value from 0.1 to less than 1.0.
Abstract:
The present disclosure provides a composition. The composition can be formed into a foam composition. In an embodiment, the composition includes a neat ethylene/propylene/nonconjugated polyene interpolymer. The neat ethylene/propylene/nonconjugated polyene interpolymer includes from greater than 6.0 wt % to 15.0 wt % nonconjugated polyene. The neat ethylene/propylene/nonconjugated polyene interpolymer has the following properties: (i) a molecular weight (Mw) from 240,000 to 270,000; (ii) a Mooney viscosity (ML (1+4), 125° C.) from 85 to 95; (iii) a rheology ratio (RR) from 35 to 65; (iv) a Mw/Mn from 2.2 to 3.5; and (v) Mw
Abstract:
Crosslinkable polymeric compositions comprising (a) 10 to 99 weight percent of an ethylene-based interpolymer having the following properties: (i) a density of 0.93 g/cm3 or less, (ii) a high-shear viscosity (V100) at 190° C. and 10% strain of 1,200 Pa-s or less, and (iii) a shear thinning ratio (V0.1/V100) at 190° C. and 10% strain of at least 8; and (b) 0 to less than 10 weight percent of a filler, where the ethylene-based interpolymer is not prepared in a high-pressure reactor. Such crosslinkable polymeric compositions may be employed as insulation layers in flexible power cables.
Abstract:
A hot melt adhesive composition includes (A) 20-95 wt % of a polymer component including an ethylene-based polymer and a propylene based polymer, the ethylene-based polymer being present in an amount greater than 30 wt %, based on a total weight of the polymer component, and (B) 1-60 wt % of a crystalline block composite comprising (1) a crystalline ethylene based polymer, (2) a crystalline alpha-olefin based polymer derived from at least one of a C3-10 α olefin, and (3) a block copolymer comprising 10-90 wt % of a crystalline ethylene block comprising 90 or more wt % units derived from ethylene and comprising 10-90 wt % of a crystalline alpha-olefin block comprising 90 or more wt % units derived from at least one of a C3-10 α olefin, (C) Optionally, from greater than zero to 70 wt % tackifier, and (D) Optionally, from greater than zero to 40 wt % of at least one selected from the group of a wax and an oil.
Abstract:
A hot melt adhesive (HMA) composition includes (A) from 1-60 wt % of a block composite compatibilizer comprising (i) a hard polymer that includes propylene, (ii) a soft polymer that includes ethylene, and (iii) a block copolymer having a soft block and a hard block, the hard block of the block copolymer having the same composition as the hard polymer of the block composite compatibilizer and the soft block of the block copolymer having the same composition as the soft polymer of the block composite compatibilizer; (B) from 1-70 wt % of a tackifier; (C) from 1-40 wt % of at least one selected from the group of a wax and an oil; and (D) Optionally, from greater than zero to 97 wt % of a polymer component that includes an ethylene-based polymer and/or a propylene-based polymer.
Abstract:
The invention provides a process to form a polymer composition comprising at least one ethylene/α-olefin/non-conjugated polyene interpolymer, and wherein the polymer composition has at least the following properties: a) a Mw/V0.1 ratio greater than, or equal to, 1.80 (g/mol)/(Pa·s); said process comprising polymerizing one or more mixture(s) comprising ethylene, an α-olefin and a non-conjugated polyene in the presence of a catalyst system comprising a metal-ligand complex of Formula (I), as described herein.
Abstract:
Disclosed are multilayer structures comprising a polyolefin layer, a tie layer and a barrier layer wherein the tie layer is a formulation comprising a crystalline block copolymer composite (CBC) comprising i) an ethylene polymer (EP) comprising at least 90 mol % polymerized ethylene; ii) an alpha-olefin-based crystalline polymer (CAOP) and iii) a block copolymer comprising (a) an ethylene polymer block comprising at least 90 mol % polymerized ethylene and (b) a crystalline alpha-olefin block (CAOB).
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
A process to form a composition, and related composition, the process comprising mixing at least the following components: a) at least one olefin/silane interpolymer comprising at least one Si—H group, and b) at least one hindered phenol selected from Formula H, as described herein.
Abstract:
A process to form a composition, and related composition, the process comprising thermally treating at least the following components: a) an olefin/silane interpolymer comprising at least one Si—H group, and b) a propylene-based polymer, or a propylene-based composition that comprises a propylene-based polymer. A process to form a composition, the process comprising thermally treating at least the following component(s): a) an olefin/silane interpolymer comprising at least one Si—H group, and wherein the olefin/silane interpolymer is formed in the presence of a bis-biphenyloxy metal complex; and wherein the composition does not comprise a peroxide.