Abstract:
Graphene grids are configured for applications in vacuum electronic devices. A multilayer graphene grid is configured as a filter for electrons in a specific energy range, in a field emission device or other vacuum electronic device. A graphene grid can be deformable responsive to an input to vary electric fields proximate to the grid. A mesh can be configured to support a graphene grid.
Abstract:
A helmet testing apparatus including a movable member, a sensor coupled to the movable member and configured to acquire compliance data regarding a liner disposed within a shell of a helmet through engagement of the sensor with the liner, and a processing circuit configured to determine a rating for the helmet based on the compliance data and predetermined compliance parameters for the helmet.
Abstract:
A helmet testing apparatus including a movable member, a sensor coupled to the movable member and configured to acquire compliance data regarding a liner disposed within a shell of a helmet through engagement of the sensor with the liner, and a processing circuit configured to determine a rating for the helmet based on the compliance data and predetermined compliance parameters for the helmet.
Abstract:
A helmet testing apparatus including a movable member, a sensor coupled to the movable member and configured to acquire compliance data regarding a liner disposed within a shell of a helmet through engagement of the sensor with the liner, and a processing circuit configured to determine a rating for the helmet based on the compliance data and predetermined compliance parameters for the helmet.
Abstract:
Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein.
Abstract:
Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
Abstract:
Garment systems including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Methods of using such garment systems are also described.
Abstract:
Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
Abstract:
A helmet testing apparatus includes a sensor configured to be selectively positionable within an interior head cavity of a helmet to acquire compliance data regarding a liner of the helmet and a processing circuit configured to determine a rating for the helmet based on the compliance data and predetermined compliance parameters for the helmet.
Abstract:
A vacuum electronic device includes a multi-layer graphene grid that includes at least two layers of graphene, where the transmission of electrons through the multi-layer graphene grid can be tuned by varying the parameters of the vacuum electronic device such as the number of graphene layers, relative positions of the electrodes, voltage biases applied to the electrodes, and other device parameters.