摘要:
A memory cell configuration in a semiconductor substrate is proposed, in which the semiconductor substrate is of the first conductivity type. Trenches which run parallel to one another are incorporated in the semiconductor substrate, and first address lines run along the side walls of the trenches. Second address lines are formed on the semiconductor substrate, transversely with respect to the trenches. Semiconductor substrate regions, in which a diode and a dielectric whose conductivity can be changed are arranged, are located between the first address lines and the second address lines. A suitable current pulse can be used to produce a breakdown in the dielectric, with information thus being stored in the dielectric.
摘要:
A method for fabricating a dopant region is disclosed. The dopant region is formed by providing a semiconductor substrate that has a surface. An electrically insulating intermediate layer is applied to the surface. A doped semiconductor layer is then applied to the electrically insulating intermediate layer, the semiconductor layer being of a first conductivity type and contains a dopant of the first conductivity type. A temperature treatment of the semiconductor substrate at a predefined diffusion temperature is performed, so that the dopant diffuses partially out of the semiconductor layer through the intermediate layer into the semiconductor substrate and forms there a dopant region of the first conductivity type. The electrical conductivity of the intermediate layer is modified, so that an electrical contact between the semiconductor substrate and the semiconductor layer is produced through the intermediate layer.
摘要:
For manufacturing a silicon capacitor, hole openings are produced in an n-doped silicon substrate, a p.sup.+ -doped region is formed at the surface thereof and this surface is provided with a dielectric layer together with a conductive layer. The silicon substrate is thinned with an etching proceeding from the back side, this etching attacking silicon selectively to p.sup.+ -doped silicon and therefore stopping when the p.sup.+ -doped region is reached.
摘要:
A bipolar transistor with a collector, a base and an emitter disposed in vertical succession includes a semiconductor substrate, insulating oxide zones disposed in the substrate for separating adjacent transistors, and a buried collector terminal layer at least partly disposed on the insulating oxide zones. An insulator structure laterally surrounding a collector. A subcollector is surrounded by the insulating oxide zones, has the same conductivity type with a lower impedance than the collector, is disposed under the collector and under the insulator structure, and is electrically connected to the collector. The insulator structure covers the buried collector terminal layer, laterally insulates the collector from the buried collector terminal layer, and has lateral surfaces extending inside the insulating oxide regions up to the subcollector. The buried collector terminal layer is in direct contact with the subcollector. The collector is electrically connected to the buried collector terminal layer only through the subcollector. The insulator structure has a contact hole extending to the buried collector terminal layer laterally of the active transistor zone, and a metallization filling the contact hole. A process for producing the bipolar transistor includes producing an insulator structure on a substrate for determining a location for a collector; and producing the collector by selective epitaxy only inside the insulator structure, for laterally insulating the collector with the insulator structure. An integrated circuit and method include such bipolar transistors and CMOS transistors.
摘要:
A method includes structuring a semiconductor substrate to produce a number semiconductor chips. Each of the semiconductor chips includes a first main face and a number of side faces. An indentation is formed at a transition between the first main face and the side faces.
摘要:
Structures and methods of forming metallization layers on a semiconductor component are disclosed. The method includes etching a metal line trench using a metal line mask, and etching a via trench using a via mask after etching the metal line trench. The via trench is etched only in regions common to both the metal line mask and the via mask.
摘要:
To form a semiconductor device, a silicon (e.g., polysilicon) gate layer is formed over a gate dielectric and a sacrificial layer (preferably titanium nitride) is formed over the silicon gate layer. The silicon gate layer and the sacrificial layer are patterned to form a gate structure. A spacer, such as an oxide sidewall spacer and a nitride sidewall spacer, is formed adjacent the sidewall of the gate structure. The semiconductor body is then doped to form a source region and a drain region that are self-aligned to the spacers. The sacrificial layer can then be removed selectively with respect to the oxide sidewall spacer, the nitride sidewall spacer and the silicon gate. A metal layer (e.g., nickel) is formed over the source region, the drain region and the silicon gate and reacted with these regions to form a silicided source contact, a silicided drain contact and a silicided gate.
摘要:
The invention relates to a method for producing a layer arrangement. An electrically conductive layer is formed and patterned. A sacrificial layer formed on at least part of the patterned electrically conductive layer. An electrically insulating layer is formed on the electrically conductive and sacrificial layers and is patterned in such a manner that one or more surface areas of the sacrificial layer are exposed. The exposed areas of the sacrificial layer are removed to expose one or more surface areas of the patterned electrically conductive layer. The patterned electrically conductive layer is covered with a pattern of electrically conductive material.
摘要:
The electrode configuration includes at least one structured layer. A mask is produced on the layer to be structured and the layer is dry etched. The mask is at least slightly etchable by dry etching. The mask contains a metal silicide, a metal nitride or a metal oxide.
摘要:
A ferroelectric transistor suitable as a memory element has a first gate intermediate layer and a first gate electrode disposed on the surface of a semiconductor substrate and disposed between source/drain regions. The first gate intermediate layer contains at least one ferroelectric layer. In addition to the first gate intermediate layer, a second gate intermediate layer and a second gate electrode are configured between the source/drain regions. The second gate intermediate layer contains a dielectric layer. The first gate electrode and the second gate electrode are connected to each other via a diode structure.