Abstract:
A method for fabricating a semiconductor device, the method comprises forming a fin on a substrate, forming a dummy gate stack on the fin and the substrate, removing a portion of an exposed portion of the fin, forming a source/drain region on an exposed portion of the fin, forming a conductive contact on the source/drain region, removing the dummy gate stack to expose a channel region of the fin, implanting ions in the channel region of the fin, performing an annealing process, and forming a gate stack on the channel region of the fin.
Abstract:
A method for fabricating a self-aligned via structure includes forming a tri-layer mask on an ILD layer over a lower metal wiring layer, the tri-layer mask includes first and second insulating layers and a metal layer in between the insulating layers; defining a trench pattern through the first insulating layer and metal layer, the trench pattern having a first width; defining a first via pattern in a lithographic mask over the trench pattern, the first via pattern having a second width that is larger than the first width; growing a metal capping layer on an exposed sidewall of the trench pattern to decrease the first width to a third width that defines a second via pattern; transferring the trench pattern into the ILD layer to form a trench; and transferring the second via pattern through the ILD layer and into the metal wiring layer to form a via.
Abstract:
A method of forming a fin-based field-effect transistor device includes forming one or more first fins comprising silicon on a substrate, forming epitaxial layers on sides of the one or more first fins, and removing the one or more first fins to form a plurality of second fins.
Abstract:
A silicon germanium alloy is formed on sidewall surfaces of a silicon fin. An oxidation process or a thermal anneal is employed to convert a portion of the silicon fin into a silicon germanium alloy fin. In some embodiments, the silicon germanium alloy fin has a wide upper portion and a narrower lower portion. In such an embodiment, the wide upper portion has a greater germanium content than the narrower lower portion. In other embodiments, the silicon germanium alloy fin has a narrow upper portion and a wider lower portion. In this embodiment, the narrow upper portion of the silicon germanium alloy fin has a greater germanium content than the wider lower portion of the silicon germanium alloy fin.
Abstract:
A method of forming semiconductor fins includes forming a plurality of sacrificial template fins from a first semiconductor material; epitaxially growing fins of a second semiconductor material on exposed sidewall surfaces of the sacrificial template fins; and removing the plurality of sacrificial template fins.
Abstract:
A method of forming fins in a dual isolation complimentary-metal-oxide-semiconductor (CMOS) device that includes a p-type field effect transistor device (pFET) and an n-type field effect transistor (nFET) device and a CMOS device with dual isolation are described. The CMOS device includes an n-type field effect transistor (nFET) region, the nFET region including one or more fins comprised of strained silicon, the one or fins in the nFET region being formed on an insulator. The CMOS device also includes a p-type field effect transistor (pFET) region, the pFET region including one or more fins comprised of silicon (Si) or silicon germanium (SiGe) on epitaxially grown silicon and including a shallow trench isolation (STI) fill to isolate the one or more fins of the pFET region from each other.
Abstract:
A method of forming fins in a dual isolation complimentary-metal-oxide-semiconductor (CMOS) device that includes a p-type field effect transistor device (pFET) and an n-type field effect transistor (nFET) device and a CMOS device with dual isolation are described. The CMOS device includes an n-type field effect transistor (nFET) region, the nFET region including one or more fins comprised of strained silicon, the one or fins in the nFET region being formed on an insulator. The CMOS device also includes a p-type field effect transistor (pFET) region, the pFET region including one or more fins comprised of silicon (Si) or silicon germanium (SiGe) on epitaxially grown silicon and including a shallow trench isolation (STI) fill to isolate the one or more fins of the pFET region from each other.
Abstract:
A method of forming fins in a complimentary-metal-oxide-semiconductor (CMOS) device that includes a p-type field effect transistor device (pFET) and an n-type field effect transistor (nFET) device and a CMOS device are described. The method includes forming a strained silicon-on-insulator (SSOI) layer in both a pFET region and an nFET region, etching the strained silicon layer, the insulator, and a portion of the bulk substrate in only the pFET region to expose the bulk substrate, epitaxially growing silicon (Si) from the bulk substrate in only the pFET region, and epitaxially growing additional semiconductor material on the Si in only the pFET region. The method also includes forming fins from the additional semiconductor material and a portion of the Si grown on the bulk substrate in the pFET region, and forming fins from the strained silicon layer and the insulator in the nFET region.
Abstract:
A method of forming replacement fins in a complimentary-metal-oxide-semiconductor (CMOS) device that includes a p-type field effect transistor device (pFET) and an n-type field effect transistor device (nFET) and a CMOS device are described. The method includes forming strained silicon (Si) fins from a strained silicon-on-insulator (SSOI) layer in both an nFET region and a pFET region, forming insulating layers over the strained Si fins, and forming trenches within the insulating layers to expose the strained Si fins in the pFET region only. The method also includes etching the strained Si fins in the pFET region to expose a buried oxide (BOX) layer of the SSOI layer, etching the exposed portions of the BOX layer to expose a bulk substrate, epitaxially growing a Si portion of pFET replacement fins from the bulk substrate, and epitaxially growing silicon germanium (SiGe) portions of the pFET replacement fins on the Si portion of the pFET replacement fins.
Abstract:
A method of forming a semiconductor device that includes forming a silicon including fin structure and forming a germanium including layer on the silicon including fin structure. Germanium is then diffused from the germanium including layer into the silicon including fin structure to convert the silicon including fin structure to silicon germanium including fin structure.