Abstract:
A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
Abstract:
Methods are provided to form adhesive materials that are used to temporarily bond handler wafers to device wafers, and which enable mid-wavelength infrared laser ablation release techniques to release handler wafers from device wafers.
Abstract:
Methods are provided for handling a device wafer. For example, a method includes providing a stack structure having a device wafer, a handler wafer, and a bonding structure disposed between the device wafer and handler wafer, and irradiating the bonding structure with long-wavelength infrared energy to ablate the bonding structure.
Abstract:
A method for processing a semiconductor wafer includes applying a release layer to a transparent handler. An adhesive layer, that is distinct from the release layer, is applied between a semiconductor wafer and the transparent handler having the release layer applied thereon. The semiconductor wafer is bonded to the transparent handler using the adhesive layer. The semiconductor wafer is processed while it is bonded to the transparent handler. The release layer is ablated by irradiating the release layer through the transparent handler with a laser. The semiconductor wafer is removed from the transparent handler.
Abstract:
A micro-battery is provided in which a metallic sealing layer is used to provide a hermetic seal between an anode side of the micro-battery and the cathode side of the micro-battery. In accordance with the present application, the metallic sealing layer is formed around a perimeter of each metallic anode structure located on the anode side and then the metallic sealing layer is bonded to a solderable metal layer of a wall structure present on the cathode side. The wall structure contains a cavity that exposes a metallic current collector structure, the cavity is filled with battery materials.
Abstract:
A digital biomedical device includes a substrate forming a reservoir, a membrane comprising a first layer and a second layer having a strain therebetween, the membrane sealing the reservoir, and a controller configured to activate the membrane and release at least a portion of the strain causing the membrane curl and open the reservoir.
Abstract:
An electro-optical module assembly is provided that includes a flexible substrate having a first surface and a second surface opposite the first surface, wherein the flexible substrate contains an opening located therein that extends from the first surface to the second surface. An optical component is located on the second surface of the flexible substrate and is positioned to have a surface exposed by the opening. At least one electronic component is located on a first portion of the first surface of the flexible substrate, and at least one micro-energy source is located on a second portion of the first surface of the flexible substrate.
Abstract:
A support structure for use in fan-out wafer level packaging is provided that includes, a silicon handler wafer having a first surface and a second surface opposite the first surface, a release layer is located above the first surface of the silicon handler wafer, and a layer selected from the group consisting of an adhesive layer and a redistribution layer is located on a surface of the release layer. After building-up a fan-out wafer level package on the support structure, infrared radiation is employed to remove (via laser ablation) the release layer, and thus remove the silicon handler wafer from the fan-out wafer level package.
Abstract:
A bonding material including a phenoxy resin thermoplastic component, and a carbon black filler component. The carbon black filler component is present in an amount greater than 1 wt. %. The carbon black filler converts the phenoxy resin thermoplastic component from a material that transmits infra-red (IR) wavelengths to a material that absorbs a substantial portion of infra-red (IR) wavelengths.
Abstract:
A method of forming an electrical device is provided that includes forming microprocessor devices on a microprocessor die; forming memory devices on an memory device die; forming component devices on a component die; and forming a plurality of packing devices on a packaging die. Transferring a plurality of each of said microprocessor devices, memory devices, component devices and packaging components to a supporting substrate, wherein the packaging components electrically interconnect the memory devices, component devices and microprocessor devices in individualized groups. Sectioning the supporting substrate to provide said individualized groups of memory devices, component devices and microprocessor devices that are interconnected by a packaging component.