Abstract:
A structure of a thin film transistor and a method for making the same are provided. The structure includes a strip-shaped silicon island, a gate, and a first and second ion doping regions. The strip-shaped silicon island is a thin film region with a predetermined long side and short side, and farther has a plurality of lateral grain boundaries substantially parallel to the short side of the silicon island. The gate is located over the silicon island and substantially parallel to the lateral grain boundaries. The first and second ion doping regions, used as source/drain regions of the TFT, are located at two sides along the long side of the island and substantially perpendicular to the gate.
Abstract:
A method capable of making a semiconductor device in a plasma-assisted chemical vapor deposition (CVD) system including a chamber having a first electrode and a second electrode spaced apart from one another, the method comprising providing a substrate on the second electrode, the substrate including a surface being exposed to the first electrode, forming a semiconductor film on the surface of the substrate and applying a first bias to the second electrode during a nucleation stage of the semiconductor film till a predetermined thickness of the semiconductor film is reached, and applying a second bias to the second electrode after the predetermined thickness of the semiconductor film is reached.
Abstract:
A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
Abstract:
The present invention discloses an active organic light emitting diode (AOLED) display structure. A color filter and thin film transistor organic light emitting diode (TFT-OLED) are incorporated on one substrate of the AOLED. Moreover, a Indium Tin Oxide(ITO)layer of the AOLED is deposited with a black matrix layer so as to lower light leakage effect and increase the contrast and color purity level in between pixels of the display. By adopting such technology, a flat panel display having large area, high resolution and low product cost is accordingly implemented.
Abstract:
A method of forming poly-silicon thin film transistors is described. An amorphous silicon thin film transistor is formed on a substrate, and then the Infrared (IR) heating process is used. A gate metal and source/drain metal are heated rapidly, and conduct heat energy to an amorphous silicon layer. Next, crystallization occurs in the amorphous silicon layer to form poly-silicon. Therefore a poly-silicon thin film transistor is produced.
Abstract:
A multi-layered wire structure includes a substrate, a plurality of first conductive lines formed in a first layer over the substrate extending in parallel to each other in a first direction, a plurality of second conductive lines formed in a second layer over the first layer extending in parallel to each other in a second direction orthogonal to the first direction, a plurality of sets of third conductive lines formed in the second layer extending in the first direction, each set of third conductive lines corresponding to one of the first conductive lines, and a plurality of sets of conductive paths formed between the first layer and the second layer, each set of conductive paths corresponding to one of the first conductive lines and one set of third conductive lines and electrically connecting the corresponding first conductive line to the corresponding set of third conductive lines.
Abstract:
A method for manufacturing a flexible panel is disclosed, which has the following steps. First, a first substrate having a plurality of functional switches or conducting lines thereon is provided. Then, a second substrate is bonded on the functional switches or conducting lines, and the first substrate is thinned to a predetermined thickness subsequently. Afterwards, a flexible third substrate is adhered on the first substrate, wherein the first substrate is sandwiched between the second substrate and the third substrate. Finally, the second substrate is removed.
Abstract:
A digital programmable DC—DC voltage-down converter which can be used in a low voltage and low power digital circuit design is disclosed. The DC—DC voltage-down converter includes at least a digitally controlled oscillator (DCO), a pulse-width modulator (PWM), a gate driver, and a switching-type voltage-down converter. Duty cycle and operating frequency of the modulated signal are controlled by using two digital control signals. Furthermore, combining the pulse-width modulator and the digitally controlled oscillator (DCO), the duty cycle of the generated clock is more robustly stable for different frequencies during process variation.
Abstract:
A multi-layered complementary conductive line structure, a manufacturing method thereof and a manufacturing method of a TFT (thin film transistor) display array are provided. The process of TFT having multi-layered complementary conductive line structures does not need to increase the mask number in comparison with the currently process and is able to solve the resistance problem of the lines inside a display.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.