Abstract:
A nonvolatile memory device includes a semiconductor pin including a first semiconductor pattern, a second semiconductor pattern on the first semiconductor pattern, and a third semiconductor pattern, disposed between the first semiconductor pattern and the second semiconductor pattern, connecting the first semiconductor pattern and the second semiconductor pattern, a charge storage layer on the second semiconductor pattern with a tunneling insulation layer interposed therebetween, and a gate electrode on the charge storage layer with a blocking insulation layer interposed therebetween, wherein a width of the second semiconductor pattern is greater than a width of the third semiconductor pattern.
Abstract:
There is provided a method for controlling a stepping motor by employing a micro-step mode at deceleration or acceleration of the stepping motor, which moves an optical pickup head in a full step mode or a half step mode, to minimize lens vibration of the optical pickup head. The method includes setting an initial step of the stepping motor, applying a micro-step mode to the stepping motor at the set initial step to move the optical pickup head, and after the initial step, applying a full step mode or a half step mode to the stepping motor to accelerate the optical pickup head by a desired speed. Also, the method includes setting a late step of the stepping motor, applying a full step mode or a half step mode to the stepping motor to decelerate the optical pickup head by a desired speed, and applying a micro-step mode to the stepping motor at the set late step to move the optical pickup head.
Abstract:
A package substrate manufactured by electrolytically plating Au in a semi-additive manner without using any plating lead line on wire bonding pads and solder ball pads, and a method for manufacturing the package substrate. The method includes the steps of forming a first copper plated layer on a base substrate having through holes and inner surfaces of the through holes, coating a first resist over the first copper plated layer, partially removing the first resist, thereby exposing portions of the first copper plated layer respectively corresponding to regions where circuit patterns are to be plated, forming a second copper plated layer on the exposed portions of the first copper plated layer, stripping the first resist, coating a second resist over the resultant structure, and removing the second resist from regions where wire bonding pads and solder ball pads are to be formed, removing exposed portions of the first copper plated layer, forming the wire bonding pads and the solder ball pads, removing the second resist, removing exposed portions of the first copper plated layer, and coating a solder resist over all surfaces of the resultant structure, and removing portions of the solder resist respectively covering the wire bonding pads and the solder ball pads.
Abstract:
In a method of forming a wiring structure, a lower structure is formed on a substrate. An insulating interlayer is formed on the lower structure. The insulating interlayer is partially removed to form at least one via hole and a dummy via hole. An upper portion of the insulating interlayer is partially removed to form a trench connecting the via hole and the dummy via hole. A first metal layer filling the via hole and the dummy via hole is formed. A second metal layer filling the trench is formed on the first metal layer.
Abstract:
Methods of forming wiring structures and methods of manufacturing semiconductor devices include forming a lower structure on a substrate, forming an interlayer insulating film including an opening on the lower structure, forming a liner film on an inner surface of the opening, treating a surface of the liner film by an ion bombardment, and forming a first conductive film on the liner film. The first conductive film is formed to be at least partially filled in the opening through a reflow process. Related wiring structures and semiconductor devices are also discussed.
Abstract:
An electro component package is disclosed. The electro component package in accordance with an embodiment of the present invention includes a first package substrate having a first chip mounted on an upper surface thereof, the first chip having a through-via formed therein; a second package substrate being separated from the first package substrate and having a second chip mounted on an upper surface thereof; and a connection substrate having one end connected with an upper surface of the first chip and the other end connected with an upper surface of the second chip, the connection substrate electrically connecting the first chip with the second chip.
Abstract:
There is provided a method for controlling a stepping motor by employing a micro-step mode at deceleration or acceleration of the stepping motor, which moves an optical pickup head in a full step mode or a half step mode, to minimize lens vibration of the optical pickup head. The method includes setting an initial step of the stepping motor, applying a micro-step mode to the stepping motor at the set initial step to move the optical pickup head, and after the initial step, applying a full step mode or a half step mode to the stepping motor to accelerate the optical pickup head by a desired speed. Also, the method includes setting a late step of the stepping motor, applying a full step mode or a half step mode to the stepping motor to decelerate the optical pickup head by a desired speed, and applying a micro-step mode to the stepping motor at the set late step to move the optical pickup head.
Abstract:
In a memory device and a method of manufacturing the memory device, a pair of channel layers included in the memory device may be formed on a sidewall of the sacrificial single crystalline layer pattern located on a protrusion of a semiconductor substrate. Accordingly, an etch damage may be reduced at the channel layer. The sacrificial single crystalline layer pattern may be removed to generate a void between the pair of the channel layers. As a result, a generation of a coupling effect may be reduced between the channel layers.
Abstract:
For driving an image sensor having a pixel with a transfer gate formed between a photo-detector and a floating diffusion region, a noise-reducing voltage is applied on the transfer gate during a first period of an integration mode. A blooming current voltage is applied on the transfer gate during a second period of the integration mode. A read voltage is applied on the transfer gate during a read mode after the integration mode. The read voltage has a higher magnitude than the blooming current voltage. With application of the noise-reducing voltage, noise is reduced and a dynamic range is extended for the image sensor.
Abstract:
For color correction in an image sensor, an image sensor processing block generates a plurality of color correction parameters corresponding to a plurality of selected pixels of the image sensor for defining a plurality of areas of a sample image. In addition, a color correction value calculation block generates a respective color correction value corresponding to a given pixel from bilinear interpolation of a respective subset of the color correction parameters corresponding to a respective one of the areas including a respective location of the given pixel.