Abstract:
A stable field-emission electron source that does not suffer from a current drop even after a high-current density operation for a long time is provided. The field-emission electron source includes: a substrate; an insulating layer that is formed on the substrate and that has a plurality of openings; cathodes arranged at the respective openings in order to emit electron beams; a lead electrode formed on the insulating layer in order to control emission of electrons from the respective cathodes; and a surface-modifying layer formed on the surface of each of the cathodes emitting electrons, comprising a chemical bond between a cathode material composing the cathodes and a material different from the cathode material.
Abstract:
There is provided a field emission display that can achieve high brightness without increasing the anode voltage, and can realize high resolution by suppressing the occurrence of inter-pixel crosstalk resulting from light excited from the phosphor layers. A field emission display is constructed by a field emission electron source disposed in a vacuum container and a phosphor screen that is disposed in the vacuum container so as to be opposite to the field emission electron source and that has a plurality of recessed portions on its surface opposing to the field emission electron source, with phosphor layers being formed in the recessed portions An image is displayed by causing the phosphor layers to emit light by collision of electrons emitted from the field emission electron source. The inner wall surface of the recessed portions widens in a tapered shape from the bottom surface side toward the opening side, and adjacent recessed portions are divided by a rib structure made of a material having a light-absorbing effect (Black effect) with respect to light of the light-emitting wavelength. The phosphor layers are formed substantially all over the bottom surface and-the inner wall surface of the recessed portions.
Abstract:
A field-emission electron source element includes a cathode substrate, an insulating layer that is formed on the cathode substrate and has an opening, a lead electrode formed on the insulating layer, and an emitter formed in the opening. A surface layer of an electron emitting region of the emitter is doped with at least one reducing element selected from the group consisting of hydrogen and carbon monoxide. Further, an image display apparatus including the above-mentioned field-emission electron source element is provided. This makes it possible to obtain not only a stable field-emission electron source element that does not cause a current drop even after a high current density operation for a long time but also a high-performance image display apparatus that can maintain a stable display performance over a long period of time.
Abstract:
The field emission type electron source device of the present invention includes: a field emission electron source portion including an extraction electrode provided on a p-type silicon substrate via an insulating film and having an opening portion at a position corresponding to a region where a cathode is provided; and a cathode portion provided on the p-type silicon substrate and at a position corresponding to the opening portion of the extraction portion; and an n-channel field effect transistor portion provided on the p-type silicon substrate, corresponding to the field emission electron source portion. The field emission electron source portion is provided in a drain region of the field effect transistor portion. A control voltage is applied to a gate electrode of the field effect transistor portion to control a field emission current from the field emission electron source portion. The drain region includes at least two wells having different impurity concentrations. Of the at least two wells, one well having a low impurity concentration is provided at an end of the drain region which contacts a channel region of the field effect transistor portion.
Abstract:
A field emission electron source includes: a field emission array portion composed of an insulation layer with a plurality of apertures, which is formed on a substrate, an extraction electrode formed on the insulation layer, and a plurality of cathodes formed respectively on the substrate in the plurality of apertures; a cathode base for fixing the field emission array portion; and an electron lens portion composed of a plurality of electrode members having a function of accelerating and converging an electron beam emitted from the field emission array portion. An emission axis of the electron beam emitted from the field emission array portion has a predetermined angle with respect to an optical axis of the electron lens portion. Thus, the field emission array portion can be protected from impact caused by ions generated in the electron lens portion, thereby improving the life of a field emission electron source.
Abstract:
A proximity exposure method and apparatus therefor. Replications of mask patterns are carried out, wherein as a mask closely approaches a substrate, the displacement of the mask is detected, and the atmospheric pressure between the mask and the substrate, or around the side of the mask opposite the substrate is controlled so as to cancel the displacement of the mask. The apparatus includes positioning apparatus, a light source for exposing the mask pattern, displacement measuring means, and atmospheric pressure controlling means.
Abstract:
An object of the sub- invention is to offer a X-ray mask capable of providing sufficiently strong alignment signal and to improve alignment accuracy. The X ray mask of the subject invention becomes the circuitry pattern and the alignment pattern on one main surface of the X-ray permeable film. Since the structure is also provided with a X-ray absorbant pattern, and this structure enables the laser beam without attenuation to illuminate the alignment pattern formed on the other surface of the X-ray permeable film, and by further optimizing the height of the alignment marks, a sufficiently strong alignment signal is obtained.
Abstract:
A system for controlling the relation in position between a photomask and a wafer for use in manufacturing apparatus of a highly integrated circuit such as large scale integration (LSI). The position control system includes a coherent light source for generating two light beams which are different in frequency and polarizing direction from each other. The light beams from the coherent light source is introduced into a first diffraction grating and the diffracted light from the first diffraction grating selectively pass through a telecentric lens system and are led to second and third diffraction gratings respectively disposed on the photomask and the wafer. Light beat signals are obtained in correspondance with the diffracted light from the second and third difraction gratings and the position relation between the photomask and wafer is controlled on the basis of the phase difference between the obtained light beat signals which corresponds to the position difference between the photomask and the wafer.