Abstract:
A light emitting device including a light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, a first electrode disposed on the first conductive semiconductor layer, a conductive layer disposed on the second conductive semiconductor layer, a second electrode disposed on the conductive layer, a channel layer directly contacts with the light emitting structure and disposed at an adjacent region of the second electrode, a support substrate disposed on the channel layer, and wherein the conductive layer is separated into at least two unit conductive layers.
Abstract:
A light emitting device package can include a package body; a light emitting device disposed on the package body and including first and second electrode pads on a bottom surface of the light emitting device; a first through hole in the package body; a second through hole in the package body, in which the first through hole is separated from the second through hole, the first electrode pad of the light emitting device directly overlaps with the first through hole in the package body, and the second electrode pad of the light emitting device directly overlaps with the second through hole in the package body.
Abstract:
A semiconductor device package provided in an embodiment comprises: first and second frames spaced apart from each other; a body disposed between the first and second frames; and a semiconductor device disposed on the first and the second frame and comprising a semiconductor layer and a first and a second electrode on the semiconductor layer, wherein the first and the second frame comprise a first metal layer having a plurality of pores, and the first metal layer of the first and the second frame may comprise coupling portions in regions where the first metal layer overlaps the first and the second electrode, respectively.
Abstract:
A light emitting device package is discussed. The light emitting device package includes a first frame having a first through hole; a second frame having a second through hole; a third frame having a third through hole; a fourth frame having a fourth through hole; a body including the first through fourth frames; a connecting frame diagonally extending in the light emitting device package from the second frame to the third frame; a first light emitting device including a first electrode pad and a second electrode pad, the first electrode pad being disposed on the first through hole of the first frame and the second electrode pad being disposed on the second through hole of the second frame; a second light emitting device including a third electrode pad and a fourth electrode pad, the third electrode pad being disposed on the third through hole of the third frame and the fourth electrode pad being disposed on the fourth through hole of the fourth frame; and a plurality of recesses on the body, and interposed between the first frame and the second frame, the plurality of recesses being spaced apart from each other.
Abstract:
The embodiment relates to a semiconductor device package, a method of manufacturing the semiconductor device package, and a light source apparatus.According to another embodiment, there is provided a light emitting device package which includes a package body (110) including a frame (111, 112) and a body (113); a light emitting device (120) including first and second bonding parts (121, 122) and disposed on the body (113); a reflective resin layer disposed between the light emitting device and a side surface of a cavity (C) formed in the body; a transparent resin layer on the light emitting device; and a phosphor layer disposed on the transparent resin layer while being spaced apart from the light emitting device.
Abstract:
A thin film transistor substrate according to an embodiment includes: a substrate; and a thin film transistor disposed on the substrate, wherein the thin film transistor includes a channel layer including a nitride-based semiconductor layer, a source electrode electrically connected to a first region of the channel layer, a drain electrode electrically connected to a second region of the channel layer, a gate electrode disposed on the channel layer, and a depletion forming layer disposed between the channel layer and the gate electrode.
Abstract:
A light emitting device package according to an embodiment includes: a body including first and second openings passing through an upper surface of the body and a lower surface of the body; a light emitting device disposed on the body and including first and second bonding parts; and first and second conductive layers disposed under the body and electrically connected to the first and second bonding parts, respectively, wherein each of the first and second bonding parts includes a protrusion portion protruding and extending in a downwards direction within the first and second openings, respectively.
Abstract:
A thin film transistor substrate according to an embodiment comprises: a support substrate; a bonding layer disposed on the support substrate; a thin film transistor disposed on the bonding layer, wherein the thin film transistor includes a channel layer containing a nitride-based semiconductor layer, a source electrode electrically connected to a first region of the channel layer, a drain electrode electrically connected to a second region of the channel layer, a gate electrode disposed below the channel layer, and a depletion forming layer disposed between the channel layer and the gate electrode; and a pixel electrode disposed on the thin film transistor and electrically connected to the drain electrode of the thin film transistor. The thin film transistor substrate according to the embodiment, and a display panel and a display device including the same have an advantage of implementing high resolution and reproducing a soft moving image by providing a high carrier mobility.
Abstract:
Disclosed are a light emitting device and a light emitting device package. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer, an adhesive layer contacting a top surface of the first conductive semiconductor layer, a first electrode contacting a top surface of the first conductive semiconductor and a top surface of the adhesive layer, and a second electrode contacting the second conductive semiconductor layer, wherein the adhesive layer contacting the first electrode is spaced apart from the second electrode.
Abstract:
A light emitting device according to the embodiment includes a conductive support member; a light emitting structure on the conductive support member including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer between the first and second semiconductor layers; and a protective device on the light emitting structure.