Abstract:
A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
Abstract:
Semiconductor devices having redistribution structures, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor package includes a first semiconductor die including a first redistribution structure and a second semiconductor die including a second redistribution structure. The first and second semiconductor dies can be mounted on a package substrate such that the first and second redistribution structures are aligned with each other. In some embodiments, an interconnect structure can be positioned between the first and second semiconductor dies to electrically couple the first and second redistribution structures to each other. The first and second redistribution structures can be configured such that signal routing between the first and second semiconductor dies can be altered based on the location of the interconnect structure.
Abstract:
Semiconductor die assemblies having high efficiency thermal paths and molded underfill material. In one embodiment, a semiconductor die assembly comprises a first die and a plurality of second dies. The first die has a first functionality, a lateral region, and a stacking site. The second dies have a different functionality than the first die, and the second dies are in a die stack including a bottom second die mounted to the stacking site of the first die and a top second die defining a top surface of the die stack. A thermal transfer structure is attached to at least the lateral region of the first die and has a cavity in which the second dies are positioned. An underfill material is in the cavity between the second dies and the thermal transfer structure, and the underfill material covers the top surface of the die stack.
Abstract:
A semiconductor device assembly is provided. The assembly includes a first semiconductor die and a second semiconductor die disposed over the first semiconductor die. The assembly further includes a plurality of die support structures between the first and second semiconductor dies and a plurality of interconnects between the first and second semiconductor dies. Each of the plurality of die support structures includes a stand-off pillar and a stand-off pad having a first bond material with a first solder joint thickness between them. Each of the plurality of interconnects includes a conductive pillar and a conductive pad having a second bond material with a second solder joint thickness between them. The first solder joint thickness is less than the second solder joint thickness.
Abstract:
Semiconductor die assemblies having high efficiency thermal paths and molded underfill material. In one embodiment, a semiconductor die assembly comprises a first die and a plurality of second dies. The first die has a first functionality, a lateral region, and a stacking site. The second dies have a different functionality than the first die, and the second dies are in a die stack including a bottom second die mounted to the stacking site of the first die and a top second die defining a top surface of the die stack. A thermal transfer structure is attached to at least the lateral region of the first die and has a cavity in which the second dies are positioned. An underfill material is in the cavity between the second dies and the thermal transfer structure, and the underfill material covers the top surface of the die stack.
Abstract:
Semiconductor die assemblies having high efficiency thermal paths and molded underfill material. In one embodiment, a semiconductor die assembly comprises a first die and a plurality of second dies. The first die has a first functionality, a lateral region, and a stacking site. The second dies have a different functionality than the first die, and the second dies are in a die stack including a bottom second die mounted to the stacking site of the first die and a top second die defining a top surface of the die stack. A thermal transfer structure is attached to at least the lateral region of the first die and has a cavity in which the second dies are positioned. An underfill material is in the cavity between the second dies and the thermal transfer structure, and the underfill material covers the top surface of the die stack.
Abstract:
Semiconductor die assemblies having high efficiency thermal paths and molded underfill material. In one embodiment, a semiconductor die assembly comprises a first die and a plurality of second dies. The first die has a first functionality, a lateral region, and a stacking site. The second dies have a different functionality than the first die, and the second dies are in a die stack including a bottom second die mounted to the stacking site of the first die and a top second die defining a top surface of the die stack. A thermal transfer structure is attached to at least the lateral region of the first die and has a cavity in which the second dies are positioned. An underfill material is in the cavity between the second dies and the thermal transfer structure, and the underfill material covers the top surface of the die stack.
Abstract:
Method for packaging a semiconductor die assemblies. In one embodiment, a method is directed to packaging a semiconductor die assembly having a first die and a plurality of second dies arranged in a stack over the first die, wherein the first die has a peripheral region extending laterally outward from the stack of second dies. The method can comprise coupling a thermal transfer structure to the peripheral region of the first die and flowing an underfill material between the second dies. The underfill material is flowed after coupling the thermal transfer structure to the peripheral region of the first die such that the thermal transfer structure limits lateral flow of the underfill material.
Abstract:
Apparatuses and methods for internal heat spreading for packaged semiconductor die are disclosed herein. An example apparatus may include a plurality of die in a stack, a bottom die supporting the plurality of die, a barrier and a heat spreader. A portion of the bottom die may extend beyond the plurality of die and a top surface of the bottom die extending beyond the plurality of die may be exposed. The barrier may be disposed alongside the plurality of die and the bottom die, and the heat spreader may be disposed over the exposed top surface of the bottom die and alongside the plurality of die.
Abstract:
Semiconductor devices having redistribution structures, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor package includes a first semiconductor die including a first redistribution structure and a second semiconductor die including a second redistribution structure. The first and second semiconductor dies can be mounted on a package substrate such that the first and second redistribution structures are aligned with each other. In some embodiments, an interconnect structure can be positioned between the first and second semiconductor dies to electrically couple the first and second redistribution structures to each other. The first and second redistribution structures can be configured such that signal routing between the first and second semiconductor dies can be altered based on the location of the interconnect structure.