Abstract:
A method of manufacturing a light emitting device includes: preparing a light-transmissive member including a light reflective sheet that has a through-hole, and a color conversion material layer that is composed of a light-transmissive resin containing a color conversion material and disposed in the through-hole, preparing a light emitting element, fixing the color conversion material layer to the light emitting element, covering a side surface of the light emitting element with a light-reflective member, and cutting the light-reflective member and light-reflective sheet.
Abstract:
A light emitting device is provided. The light emitting device includes a light emitting element, which emits blue light, and a light transmissive member having a first principal face bonded to the light emitting element and a second principal face opposite the first principal face. The light transmissive member has a light transmissive base material and wavelength conversion substances, which are contained in the base material and which absorb the light from the light emitting element and emit light. The wavelength conversion substances are localized in the base material towards the first principal face, and include a first phosphor which emits green to yellow light and a second phosphor which emits red light. The first phosphor is more localized towards the first principal face than the second phosphor. The second phosphor is a manganese-activated fluoride phosphor.
Abstract:
A light emitting device includes a resin package and a light emitting element. The resin package has a cavity. The resin package includes first and second lead portions and a resin member. The first lead portion includes a first lead side surface and a lead recess portion that extends from the first lead side surface in a direction away from the second lead portion, with a part of the resin member being arranged within the lead recess portion. The light emitting element includes first and second electrodes that respectively face the first and second lead portions. The first electrode includes a first electrode side surface and an electrode recess portion that extends from the first electrode side surface in a direction away from the second electrode. The electrode recess portion is arranged at a position overlapping the lead recess portion in a plan view.
Abstract:
A light emitting device includes a plurality of light emitting elements, a light transmissive member, a first member and a second member. Each of the light emitting elements has a pair of electrodes on a lower surface thereof. The light-transmissive member is disposed on an upper surface of each of the light emitting elements to transmit light from the light emitting elements. The first member is disposed on one or more lateral surfaces of the light-transmissive member and constitutes part of an upper surface of the light emitting device. The second member surrounds an outer periphery of each of the light emitting elements and constitutes part of a lower surface of the light emitting device. Lower surfaces of the electrodes are exposed from the second member.
Abstract:
A light emitting device includes a substrate having a first main surface that serves as the light extraction surface, a second main surface that is opposite the first main surface, and a mounting surface that is adjacent to at least the second main surface, and that is provided an insulating base material, a pair of connection terminals disposed on the second main surface, and a heat dissipation terminal disposed on the second main surface and between the pair of connection terminals; a light emitting element that is mounted on the first main surface of the substrate and; a sealing member that seals the light emitting element and is formed substantially in the same plane as the substrate on the mounting surface.
Abstract:
The light emitting device package of the present invention has a longitudinal direction (as viewed from above) and a transverse direction perpendicular to the longitudinal direction, and is provided with a first and second lead-frame lined-up in the longitudinal direction and molded resin holds the first and second lead-frames integrally. The package is characterized in that the first lead-frame has a main body and an extension that extends from the main body with a narrowed width towards the second lead-frame. Further, a recess is established in the bottom surface of the first lead-frame, and at least part of the exposed region of the bottom surface of the extension is separated from the exposed region of the bottom surface of the main body by the molded resin that fills the recess.
Abstract:
A molded package includes a molded resin and a lead. The molded resin has a recess portion provided on an upper surface of the molded resin to accommodate a light emitting component. The lead is partially exposed from a bottom surface of the recess portion of the molded resin to be electrically connected to the light emitting component and extends below a side wall of the recess portion. The lead has a groove formed on a surface of the lead at least partially along the side wall. The groove has an inside upper edge and an outside upper edge and is filled with the molded resin so that the inside upper edge is exposed from the bottom surface of the recess portion and the outside upper edge is embedded within the molded resin.
Abstract:
A light-emitting unit includes: a wiring board; light-emitting elements on the wiring board; a light reflecting member on the wiring board, the light reflecting member covering a lateral surface of each of the light-emitting elements; wavelength conversion layers each provided on or above an emission surface of a corresponding one of the plurality of light-emitting elements; light reflecting layers on the wavelength conversion layers, respectively; and a protecting layer configured to transmit light and provided on the light reflecting member. The light-transmitting protecting layer covers at least a lateral surface of the wavelength conversion layers and at least a lateral surfaces of the light reflecting layers. An upper surface of the protecting layer has a first recess in a region where the plurality of light reflecting layers are not present in a top view. The first recess includes at least one concave surface.
Abstract:
A light-emitting device includes a wiring board, a plurality of light-emitting elements disposed on the wiring board, a light-reflecting member covering a lateral surface of each of the plurality of light-emitting elements, a plurality of light-transmitting layers each located above an emission surface of a corresponding one of the plurality of light-emitting elements, a plurality of light-reflecting layers disposed on the plurality of light-transmitting layers, respectively, a light-diffusing layer disposed above the plurality of light-reflecting layers and the light-reflecting member, and a low-refractive-index layer located between the light-reflecting member and the light-diffusing layer, around each pair of one of the plurality of light-transmitting layers and one of the light-reflecting layers, and having a refractive index lower than that of the plurality of light-transmitting layers. Each of the plurality of light-reflecting layer has a width in a cross-sectional view thereof which is equal to or greater than that of a corresponding one of the plurality of light-transmitting layers.
Abstract:
A light emitting module including: a light guide member including: an emission region defined by a sectioning groove, a light source placement part located in the emission region, and a light adjusting hole; and a light source disposed in the light source placement part. In the schematic top view: the light adjusting hole is not positioned on a first straight line connecting (i) a center of the light source and (ii) a point in the sectioning groove that is farthest from the center of the light source, and a first lateral face of the light adjusting hole has a first region, and a line normal to the first region is oblique to a second straight line connecting (i) the center of the light source and (ii) a point in the sectioning groove that is closest to the center of the light source.