Abstract:
A pre-treatment method for plating can form a plating layer having sufficient adhesivity on an inner surface of a recess and on a surface of a substrate at an outside of the recess even when the recess has a high aspect ratio. The pre-treatment method for plating includes a preparation process of preparing the substrate having the recess; a first coupling layer forming process of forming a first coupling layer 21a at least on the inner surface of the recess of the substrate by using a first coupling agent; and a second coupling layer forming process of forming a second coupling layer 21b at least on the surface of the substrate at the outside of the recess by using a second coupling agent after the first coupling layer forming process.
Abstract:
A substrate liquid processing method includes preparing a substrate having a recess on a surface thereof, a seed layer being formed on a surface of the recess; bringing a first pretreatment liquid, containing a reducing agent, a pH adjuster, and an additive configured to accelerate or inhibit an electroless plating reaction, into contact with the seed layer; and precipitating, after the bringing of the first pretreatment liquid into contact with the seed layer, a plating metal in the recess by supplying a first electroless plating liquid to the recess.
Abstract:
A substrate W having a non-plateable material portion 31 and a plateable material portion 32 formed on a surface thereof is prepared, and then, a catalyst is selectively imparted to the plateable material portion 32 by performing a catalyst imparting processing on the substrate W. Thereafter, a plating layer 35 is selectively formed on the plateable material portion 32 by performing a plating processing on the substrate W. Before the imparting of the catalyst, an organic film 36 is formed on the substrate W by supplying an organic liquid L1 onto the substrate W.
Abstract:
A substrate W having a non-plateable material portion 31 and a plateable material portion 32 formed on a surface thereof is prepared, and then, a catalyst is selectively imparted to the plateable material portion 32 by performing a catalyst imparting processing on the substrate W. Thereafter, a plating layer 35 is selectively formed on the plateable material portion 32 by performing a plating processing on the substrate W. Before the imparting of the catalyst, an organic film 36 is formed on the substrate W by supplying an organic liquid L1 onto the substrate W.
Abstract:
Reliability of a plating process and reliability of a component manufactured through the plating process can be improved by suppressing peeling between plating layers formed by electroless plating. In a plating method, a plated component manufactured by the plating method, and a plating system 1 configured to manufacture the plated component by the plating method, a second electroless plating layer 39, which is made of a copper alloy and formed by the electroless plating, is formed on a surface of a first electroless plating layer 38 formed by the electroless plating. The first electroless plating layer 38 is a barrier layer configured to suppress diffusion of copper and is made of cobalt or a cobalt alloy. The second electroless plating layer 39 is a seed layer for forming an electrolytic plating layer of copper on a surface thereof and is made of an alloy of copper and nickel.
Abstract:
A catalyst is imparted selectively to a plateable material portion 32 by performing a catalyst imparting processing on a substrate W having a non-plateable material portion 31 and the plateable material portion 32 formed on a surface thereof. Then, a hard mask layer 35 is formed selectively on the plateable material portion 32 by performing a plating processing on the substrate W. The non-plateable material portion 31 is made of SiO2 as a main component, and the plateable material portion 32 is made of a material including, as a main component, a material containing at least one of a OCHx group and a NHx group, a metal material containing Si as a main component, a material containing carbon as a main component or a catalyst metal material.
Abstract:
A metal wiring layer can be formed within a recess of a substrate while suppressing the metal wiring layer from being formed at the outside of the recess. A metal wiring layer forming method includes forming a catalyst layer 5 formed of Pd on a tungsten layer W on a bottom surface 3a of the recess 3 of the substrate 2 without forming the catalyst layer 5 on a surface 3b of an insulating layer of the recess 3; and forming a Ni-based metal wiring layer 7 on the catalyst layer 5 of the recess 3.
Abstract:
A Plating method includes a first plating process S21 of supplying a first plating liquid to a substrate 2 having a recess 12 and forming a first plating layer 13; and a second plating process of supplying a second plating liquid to the substrate 2 and forming a second plating layer 14 on the first plating layer 13 after the first plating process S21. Here, a concentration of an additive contained in the first plating liquid is different from that in the second plating liquid. The first plating process S21 includes a process of forming the first plating layer of a discontinuous film or a particle shape on the substrate 2 by rotating the substrate 2 at a first speed and a process of rotating the substrate 2 at a second speed and at a third speed repeatedly.
Abstract:
A multiple number of accurately-patterned metal layers can be formed on a substrate. On a substrate 11, a patterned first metal layer 12 is formed (see FIG. 1A), and then, a metal sacrificial layer 15 is formed on the first metal layer 12 (see FIG. 1B). Further, an aqueous solution containing an ionized metal allowed to be substituted with a metal of the metal sacrificial layer 15 is coated on the metal sacrificial layer 15, so that a catalyst layer 16 is formed on the metal sacrificial layer 15 (see FIG. 1E) . Thereafter, a second metal layer 18 is formed on the catalyst layer 16 by performing an electroless plating process (see FIG. 1F). Furthermore, the substrate 11 is etched by using the second metal layer 18 as a mask.
Abstract:
A plating method can improve uniformity in thickness of a plating layer formed on an inner surface of a recess. The plating method includes a loading process of loading the substrate in which the recess is formed into a casing; and a plating process of supplying a plating liquid to the substrate and forming a plating layer having a specific function on an inner surface of the recess. In the plating process, after supplying the plating liquid to the substrate and filling the plating liquid into the recess, a plating liquid having a higher temperature than a temperature of the plating liquid is supplied to the substrate.