Abstract:
The present invention pertains to an insulation system comprising one or more insulation blankets, wherein each of said multilayer insulation blankets comprises: —a core consisting of an insulation material [material (I)], and —a shell encapsulating said core, said shell comprising at least one multilayer assembly comprising: (1) an outer layer [layer (L1)] consisting of a composition [composition (C1)] comprising, preferably consisting of at least one thermoplastic polymer [polymer (1)] having a limiting oxygen index (LOI) of at least 20% by volume, wherein at least one surface, preferably the inner surface, of said layer (L1) comprises one or more grafted functional groups [surface (L1-f)], (2) directly adhered to said at least one surface (L1-f), a layer consisting of at least one metal compound (M1) [layer (L2)], and (3) optionally, directly adhered to the opposite side of the layer (L2), a layer consisting of at least one metal compound (M2) [layer (L3)], said metal compound (M2) being equal to or different from said metal compound (M1). The present invention also pertains to a process for the manufacture of said insulation system and to uses of said insulation system in various applications including aircraft applications.
Abstract:
A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
Abstract:
The present invention pertains to an insulation system comprising one or more insulation blankets, wherein each of said multilayer insulation blankets comprises: —a core consisting of an insulation material [material (I)], and —a shell encapsulating said core, said shell comprising at least one multilayer assembly comprising: (1) an outer layer [layer (L1)] consisting of a composition [composition (C1)] comprising, preferably consisting of, at least one thermoplastic polymer [polymer (1)] having a limiting oxygen index (LOI) of at least 20% by volume, wherein at least one surface, preferably the inner surface, of said layer (L1) comprises one or more grafted functional groups [surface (L1-f)], (2) directly adhered to said at least one surface (L1-f), a layer consisting of at least one metal compound (M1) [layer (L2)], and (3) optionally, directly adhered to the opposite side of the layer (L2), a layer consisting of at least one metal compound (M2) [layer (L3)], said metal compound (M2) being equal to or different from said metal compound (M1). The present invention also pertains to a process for the manufacture of said insulation system and to uses of said insulation system in various applications including aircraft applications.
Abstract:
A method is provided for metallisation of non-conductive substrates providing a high adhesion of the deposited metal to the substrate material and thereby forming a durable bond. The method applies a novel combination of a metal oxide compound to promote adhesion and a transition metal plating catalyst compound promoting the metal layer formation.
Abstract:
Stable zero-valent metal compositions and methods of making and using these compositions are provided. Such compositions are useful as catalysts for subsequent metallization of non-conductive substrates, and are particularly useful in the manufacture of electronic devices.
Abstract:
A method of making a sealing article that includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.
Abstract:
A substrate processing apparatus includes a substrate holder, a rotational driving unit, a cover body, a transfer mechanism, a cleaning liquid supply and a controller. The substrate holder is configured to hold a substrate. The rotational driving unit is configured to rotate the substrate holder. The cover body is configured to cover a top surface of the substrate held by the substrate holder. The transfer mechanism is configured to transfer a cleaning jig to the substrate holder. The cleaning liquid supply is configured to supply a cleaning liquid toward a bottom surface of the cleaning jig held by the substrate holder. The controller is configured to control the rotational driving unit to rotate the substrate holder. The cleaning jig is provided with at least one hole through which the cleaning liquid discharged from the cleaning liquid supply passes toward the cover body.
Abstract:
The present invention pertains to an electrode-forming composition comprising: (a) at least one fluoropolymer [polymer (F)]; (b) particles of at least one active electrode material [particles (P)], said particles (P) comprising: —a core comprising at least one active electrode compound [compound (NMC)] of formula (I): Li[Lix(ApBQCw)1-x]O2 (I) wherein A, B and C, different from each other, are selected from the group consisting of Fe, Ni, Mn and Co, x is comprised between 0 and 0.3, P is comprised between 0.2 and 0.8, preferably between 0.2 and 0.5, more preferably between 0.2 and 0.4, Q is comprised between 0.1 and 0.4, and W is comprised between 0.1 and 0.4, and —an outer layer consisting of a metal compound [compound (M)] different from Lithium, said outer layer at least partially surrounding said core; and (c) a liquid medium [medium (L)]. The present invention also pertains to a process for manufacturing said electrode-forming composition, to the use of said electrode-forming composition in a process for manufacturing a positive electrode and to the positive electrode obtainable therefrom.
Abstract:
Stable zero-valent metal compositions and methods of making and using these compositions are provided. Such compositions are useful as catalysts for subsequent metallization of non-conductive substrates, and are particularly useful in the manufacture of electronic devices.
Abstract:
A sealing article includes a body and a coating layer disposed on at least one surface of the body. The body comprises a polymeric elastomer such as perfluoroelastomer or fluoroelastomer. The coating layer comprises at least one metal. The sealing article may be a seal, a gasket, an O-ring, a T-ring or any other suitable product. The sealing article is resistant to ultra-violet (UV) light and plasma, and may be used for sealing a semiconductor processing chamber.