Abstract:
A method of manufacturing FinFET semiconductor devices in memory regions and logic regions includes the steps of forming a first gate material layer on a substrate and fins, patterning the first gate material layer to form a control gate, forming a second gate material layer on the substrate and fins, performing an etch process to the cell region so that the second gate material layer in the cell region is lower than the second gate material layer in the peripheral region, patterning the second gate material layer to form a select gate in the cell region and a dummy gate in the logic region respectively.
Abstract:
A semiconductor device is provided, including a lower conducting layer formed above a substrate, an upper conducting layer, and a memory cell structure formed on the lower conducting layer (such as formed between the lower and upper conducting layers). The memory cell structure includes a bottom electrode formed on the lower conducting layer and electrically connected to the lower conducting layer, a transitional metal oxide (TMO) layer formed on the bottom electrode, a TMO sidewall oxides formed at sidewalls of the TMO layer, a top electrode formed on the TMO layer, and spacers formed on the bottom electrode. The upper conducting layer is formed on the top electrode and electrically connected to the top electrode.
Abstract:
A method of forming a Resistive Random Access Memory (RRAM) includes the following steps. A first dielectric layer is formed on a first electrode layer. A second dielectric layer having a first trench is formed on the first dielectric layer. Spacers are formed beside sidewalls of the first trench. Apart of the first dielectric layer exposed by the spacers is removed, thereby forming a second trench in the first dielectric layer. A resistance switching material fills in the second trench. The second dielectric layer and the spacers are removed. A second electrode layer is formed on the resistance switching material and the first dielectric layer. The present invention also provides a RRAM formed by said method.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a substrate, at least a first cell, and at least a second cell. The substrate has a first region and a second region. The first and second cells are in the first and second regions respectively. The first cell comprises a first dielectric layer, a floating gate electrode, an oxide-nitride-oxide (ONO) gate dielectric layer, a second dielectric layer, and a control gate electrode. The ONO gate dielectric layer is on the floating gate electrode in the first dielectric layer on the substrate. The control gate electrode is in both of the first dielectric layer and the second dielectric layer on the first dielectric layer. The ONO gate dielectric layer contacting with the control gate electrode is wholly below a top surface of the first dielectric layer.
Abstract:
A semiconductor device includes an interconnection formed above a substrate, and the interconnection comprising interconnect layers respectively buried in dielectric layers; a lower conducting layer formed above the substrate; a memory cell structure formed on the lower conducting layer and buried in one of the dielectric layers; an upper conducting layer formed on the memory cell structure. The memory cell structure includes a bottom electrode formed on and electrically connected to the lower conducting layer; a transitional metal oxide (TMO) layer formed on the bottom electrode; and a top electrode formed on the TMO layer, wherein the upper conducting layer is formed on the top electrode and electrically connected to the top electrode. Also, the lower conducting layer and the upper conducting layer are positioned in the different dielectric layers.
Abstract:
A resistive random access memory includes a lower electrode, an upper electrode and a resistive layer between the lower electrode and the upper electrode, wherein the resistive layer includes a constant-resistance portion and a variable-resistance portion surrounding the constant-resistance portion.
Abstract:
A flash cell includes a gate and an erase gate. The gate is disposed on a substrate, wherein the gate includes a control gate on the substrate and a floating gate having a tip between the substrate and the control gate. The erase gate is disposed beside the gate, wherein the tip points toward the erase gate. The present invention also provides a flash cell forming process including the following steps. A gate is formed on a substrate, wherein the gate includes a floating gate on the substrate. An implantation process is performed on a side part of the floating gate, thereby forming a first doped region in the side part. At least a part of the first doped region is oxidized, thereby forming a floating gate having a tip.
Abstract:
A method for manufacturing a non-volatile memory structure includes providing a substrate having a memory region and a logic region defined thereon, masking the logic region while forming at least a first gate in the memory region, forming an oxide-nitride-oxide (ONO) structure under the first gate, forming an oxide structure covering the ONO structure on the substrate, masking the memory region while forming a second gate in the logic region, and forming a first spacer on sidewalls of the first gate and a second spacer on sidewalls of the second gate simultaneously.
Abstract:
A flash memory structure includes a memory gate on a substrate, a select gate adjacent to the memory gate, and an oxide-nitride spacer between the memory gate and the select gate, where the oxide-nitride spacer further includes an oxide layer and a nitride layer having an upper nitride portion and a lower nitride portion, and the upper nitride portion is thinner than the lower nitride portion.
Abstract:
A layout structure for memory devices includes a plurality of first gate patterns, a plurality of first landing pad patterns, a plurality of dummy patterns, a plurality of second landing pad patterns, and a plurality of second gate patterns. The first landing pad patterns are parallel with each other and electrically connected to the first gate patterns. The dummy patterns and the first landing pad patterns are alternately arranged, and the second landing pad patterns are respectively positioned in between one first landing pad pattern and one dummy pattern. The second gate patterns are electrically connected to the second landing pad patterns.