摘要:
Techniques are disclosed for forming transistor architectures having extended recessed spacer and source/drain (S/D) regions. In some embodiments, a recess can be formed, for example, in the top of a fin of a fin-based field-effect transistor (finFET), such that the recess allows for forming extended recessed spacers and S/D regions in the finFET that are adjacent to the gate stack. In some instances, this configuration provides a higher resistance path in the top of the fin, which can reduce gate-induced drain leakage (GIDL) in the finFET. In some embodiments, precise tuning of the onset of GIDL can be provided. Some embodiments may provide a reduction in junction leakage (Lb) and a simultaneous increase in threshold voltage (VT). The disclosed techniques can be implemented with planar and non-planar fin-based architectures and can be used in standard metal-oxide-semiconductor (MOS) and complementary MOS (CMOS) process flows, in some embodiments.
摘要:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
摘要:
A semiconductor device is described having an integrated high-k dielectric layer and metal control gate. A method of fabricating the same is described. Embodiments of the semiconductor device include a high-k dielectric layer disposed on a floating gate. The high-k dielectric layer defines a recess. A metal control gate is formed in the recess.
摘要:
Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
摘要:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
摘要:
Provided are devices having at least three and at least four different types of transistors wherein the transistors are distinguished at least by the thicknesses and or compositions of the gate dielectric regions. Methods for making devices having three and at least four different types of transistors that are distinguished at least by the thicknesses and or compositions of the gate dielectric regions are also provided.
摘要:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric composed of a first dielectric layer disposed on the first fin active region, and a second, different, dielectric layer disposed on the first dielectric layer. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric composed of the second dielectric layer disposed on the second fin active region.
摘要:
Methods of forming and using a microelectronic structure are described. Embodiments include forming a diode between a metal fuse gate and a PMOS device, wherein the diode is disposed between a contact of the metal fuse gate and a contact of the PMOS device, and wherein the diode couples the contact of the metal fuse gate to the contact of the PMOS device.
摘要:
A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack.
摘要:
Snapback ESD protection device employing one or more non-planar metal-oxide-semiconductor transistors (MOSFETs) are described. The ESD protection devices may further include lightly-doped extended drain regions, the resistances of which may be capacitively controlled through control gates independent of a gate electrode held at a ground potential. Control gates may be floated or biased to modulate ESD protection device performance. In embodiments, a plurality of core circuits are protected with a plurality of non-planar MOSFET-based ESD protection devices with control gate potentials varying across the plurality.