摘要:
A method of synthesizing a PGO spin-coating precursor solution includes utilizing the starting materials of lead acetate trihydrate (Pb(OAc)2•3H2O) and germanium alkoxide (Ge(OR)4(R=C2H5 and CH(CH3)2)). The organic solvent is di(ethylene glycol) ethyl ether. The mixed solution of lead and di(ethylene glycol) ethyl ether is heated in an atmosphere of air at a temperature no greater than 185° C., and preferably no greater than 190° C. for a time period in a range of thirty minutes to four hours. During the heating step the color of the solution is monitored to determine when the reaction is complete and when decomposition of the desired product begins to take place. The solution is then added to germanium di(ethylene glycol) ethyl ether to make the PGO spin-coating solution. This second step also entails heating the solution to a temperature no greater than 190° C. for a time period in a range of 0.5 to 2.0 hours. The process results in a PGO precursor solution suitable for use in spin-coating.
摘要:
A multi-layer PrxCa1-xMnO3 (PCMO) thin film capacitor and associated deposition method are provided for forming a bipolar switching thin film. The method comprises: forming a bottom electrode; depositing a nanocrystalline PCMO layer; depositing a polycrystalline PCMO layer; forming a multi-layer PCMO film with bipolar switching properties; and, forming top electrode overlying the PCMO film. If the polycrystalline layers are deposited overlying the nanocrystalline layers, a high resistance can be written with narrow pulse width, negative voltage pulses. The PCMO film can be reset to a low resistance using a narrow pulse width, positive amplitude pulse. Likewise, if the nanocrystalline layers are deposited overlying the polycrystalline layers, a high resistance can be written with narrow pulse width, positive voltage pulses, and reset to a low resistance using a narrow pulse width, negative amplitude pulse.
摘要:
A method of fabricating a CMR thin film for use in a semiconductor device includes preparing a CMR precursor in the form of a metal acetate based acetic acid solution; preparing a wafer; placing a wafer in a spin-coating chamber; spin-coating and heating the wafer according to the following: injecting the CMR precursor into a spin-coating chamber and onto the surface of the wafer in the spin-coating chamber; accelerating the wafer to a spin speed of between about 1500 RPM to 3000 RPM for about 30 seconds; baking the wafer at a temperature of about 180° C. for about one minute; ramping the temperature to about 230° C.; baking the wafer for about one minute at the ramped temperature; annealing the wafer at about 500° C. for about five minutes; repeating said spin-coating and heating steps at least three times; post-annealing the wafer at between about 500° C. to 600° C. for between about one to six hours in dry, clean air; and completing the semiconductor device.
摘要:
A memory array dual-trench isolation structure and a method for forming the same have been provided. The method comprises: forming a p-doped silicon (p-Si) substrate; forming an n-doped (n+) Si layer overlying the p-Si substrate; prior to forming the n+ Si bit lines, forming a p+ Si layer overlying the n+ Si layer; forming a layer of silicon nitride overlying the p+ layer; forming a top oxide layer overlying the silicon nitride layer; performing a first selective etch of the top oxide layer, the silicon nitride layer, the p+ Si layer, and a portion of the n+ Si layer, to form n+ Si bit lines and bit line trenches between the bit lines; forming an array of metal bottom electrodes overlying a plurality of n-doped silicon (n+ Si) bit lines, with intervening p-doped (p+) Si areas; forming a plurality of word line oxide isolation structures orthogonal to and overlying the n+ Si bit lines, adjacent to the bottom electrodes, and separating the p+ Si areas; forming a plurality of top electrode word lines, orthogonal to the n+ Si bit lines, with an interposing memory resistor material overlying the bottom electrodes; and, forming oxide-filled word line trenches adjacent the word lines.
摘要:
A method of fabricating a PCMO thin film at low temperature for use in a RRAM device includes preparing a PCMO precursor; preparing a substrate; placing the substrate into a MOCVD chamber; introducing the PCMO precursor into the MOCVD chamber to deposit a PCMO thin film on the substrate; maintaining a MOCVD vaporizer at between about 240° C. to 280° C. and maintaining the MOCVD chamber at a temperature of between about 300° C. to 400° C.; removing the PCMO thin-film bearing substrate from the MOCVD chamber; and completing the RRAM device.
摘要:
A method of fabricating a ferroelectric thin film on an iridium-composite electrode in an integrated circuit device includes preparing a substrate; depositing an iridium-composite bottom electrode on the substrate; annealing the bottom electrode in a first annealing step; depositing a buffer layer on the bottom electrode, including depositing a layer of material taken from the group of materials consisting of HfO2, ZrO2, TiO2, LaOx, La—Al—O, Ti—Al—O, Hf—Al—O, Zr—Al—O, Hf—Zr—O, Zr—Ti—O, Hf—Ti—O, La—Zr—O, La—Hf—O, and La—Ti—O; annealing the buffer layer in a second annealing step; depositing a layer of Bi4Ti3O12, to a thickness of between about 20 nm to 500 nm, on the buffer layer; annealing the ferroelectric layer in a third annealing step; and completing the integrated circuit device.
摘要翻译:在集成电路器件中的铱复合电极上制造铁电薄膜的方法包括:制备衬底; 在基板上沉积铱复合底部电极; 在第一退火步骤中退火底部电极; 在底部电极上沉积缓冲层,包括沉积从由HfO 2,ZrO 2,TiO 2,TiO 2,ZrO 2,TiO 2, La,Al-O,Ti-Al-O,Hf-Al-O,Zr-Al-O,Hf-Zr-O,Zr-Ti-O,Hf -Ti-O,La-Zr-O,La-Hf-O和La-Ti-O; 在第二退火步骤中退火缓冲层; 在缓冲层上沉积一层厚度为约20nm至500nm的Bi 4 N 3 O 12 O 12层; 在第三退火步骤中退火铁电层; 并完成集成电路设备。
摘要:
A memory array dual-trench isolation structure and a method for forming the same have been provided. The method comprises: forming a p-doped silicon (p-Si) substrate; forming an n-doped (n+) Si layer overlying the p-Si substrate; prior to forming the n+ Si bit lines, forming a p+ Si layer overlying the n+ Si layer; forming a layer of silicon nitride overlying the p+ layer; forming a top oxide layer overlying the silicon nitride layer; performing a first selective etch of the top oxide layer, the silicon nitride layer, the p+ Si layer, and a portion of the n+ Si layer, to form n+ Si bit lines and bit line trenches between the bit lines; forming an array of metal bottom electrodes overlying a plurality of n-doped silicon (n+ Si) bit lines, with intervening p-doped (p+) Si areas; forming a plurality of word line oxide isolation structures orthogonal to and overlying the n+ Si bit lines, adjacent to the bottom electrodes, and separating the p+ Si areas; forming a plurality of top electrode word lines, orthogonal to the n+ Si bit lines, with an interposing memory resistor material overlying the bottom electrodes; and, forming oxide-filled word line trenches adjacent the word lines.
摘要:
Resistive cross point memory devices are provided, along with methods of manufacture and use. The memory device comprises an active layer of perovskite material interposed between upper electrodes and lower electrodes. A bit region located within the active layer at the cross point of an upper electrode and a lower electrode has a resistivity that can change through a range of values in response to application of one, or more, voltage pulses. Voltage pulses may be used to increase the resistivity of the bit region, decrease the resistivity of the bit region, or determine the resistivity of the bit region. Memory circuits are provided to aid in the programming and read out of the bit region.
摘要:
A RRAM memory cell is formed on a silicon substrate having a operative junction therein and a metal plug formed thereon, includes a first oxidation resistive layer; a first refractory metal layer; a CMR layer; a second refractory metal layer; and a second oxidation resistive layer. A method of fabricating a multi-layer electrode RRAM memory cell includes preparing a silicon substrate; forming a junction in the substrate taken from the group of junctions consisting of N+ junctions and P+ junctions; depositing a metal plug on the junction; depositing a first oxidation resistant layer on the metal plug; depositing a first refractory metal layer on the first oxidation resistant layer; depositing a CMR layer on the first refractory metal layer; depositing a second refractory metal layer on the CMR layer; depositing a second oxidation resistant layer on the second refractory metal layer; and completing the RRAM memory cell.
摘要:
A method of forming a PCMO thin film in a RRAM device includes preparing a substrate; depositing a metal barrier layer on the substrate; forming a bottom electrode on the barrier layer; spin-coating a layer of Pr1−xCaxMnO3 (PCMO) on the bottom electrode using a PCMO precursor; baking the PCMO thin film in one or more baking steps; annealing the PCMO thin film in a first annealing step after each spin-coating step; repeating the spin-coating step, the baking step and the first annealing step until the PCMO thin film has a desired thickness; annealing the PCMO thin film in a second annealing step, thereby producing a PCMO thin film having a crystalline structure of Pr1−xCaxMnO3, where 0.2