Abstract:
A tankless reverse osmosis system which is capable of producing a permeate flow rate of at least 500 GPD when operating under home reverse osmosis conditions.
Abstract:
The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
Abstract:
A condensate filtering device of the present invention comprises a simulation unit which is able to simulate operating conditions being the same as operating conditions of a main body of an actual condensate filtering device and sample a hollow fiber membrane easily. The condensate filtering device comprises a unit evaluating properties of a hollow fiber membrane provided with a main body of the condensate filtering device containing a first hollow fiber membrane module in which filtration of condensate and air scrubbing washing are repeated, and equipped with a column containing a second hollow fiber membrane module having a hollow fiber membrane which is the same kind as the hollow fiber membrane of the first hollow fiber membrane module; and a line introducing the condensate for unit which is a branched line from a line introducing the condensate directing to the main body of the condensate filtering device and introduces the condensate into the unit evaluating the properties of the hollow fiber membrane.
Abstract:
A filtration system includes two end manifolds formed from blocks which are adapted to receive two or more reverse osmosis filtration tubes and to provide separate flow channels for the feed and filtered flows through the tubes. The end manifolds are machined from a block of nylon or similar resilient material and have cylindrical grooves formed to receive the outer and inner tubes of the filtration tubes and annular grooves formed within these cylindrical grooves to restrain O rings which seal the outer and inner tubes have channels formed between the cylindrical grooves which receive the outer and inner tubes of the filtration tubes which channels provide separate flow paths for the feed and filtered flows.
Abstract:
A tankless reverse osmosis system which is capable of producing a permeate flow rate of at least 500 GPD when operating under home reverse osmosis conditions.
Abstract:
A self-cleaning, back-washable filter apparatus and method for use with a pumping apparatus which is at least partially immersed in fluid. The filter apparatus may comprise a vibration device that is powered by a flow of fluid. A method for filtering a flow of fluid is also disclosed, comprising vibrating a filter by applying a flow of fluid to the filter.
Abstract:
The present invention relates to a filter element having a non-porous extrusion laminated strip formed on at least one edge and at least one side of a membrane. The strip is used to provide a means for ensuring a good bond between the filter element and the material into which it is potted. The strip is formed by the use of one or more extrusion heads that apply molten or softened polymer to one or both of the surfaces of the filter in a width and height desired. The strip is then subjected to pressure such as through a nip to at least partially embed the polymer strip into the filter pores so as to create a strong mechanical bond between the strip and the filter element. Additionally, it allows for the simultaneous formation of more than one membrane with the edge lamination at the same time.
Abstract:
A halide gas separating and collecting device for separating and collecting halide gas from mixed gas containing the halide gas, wherein at least first and second stage separating membrane modules are stacked in multiple stages. The method comprises: feeding the mixed gas to the inlet of the first stage separating membrane module, feeding the gas passed through the previous separating membrane module to the inlets of the second and subsequent stage separating membrane modules, recycling the gas unpassed through the second and subsequent stage separating membrane modules to the inlet of the first stage separating membrane module, and controlling the flow of gas unpassed through the first stage separating membrane module by a control valve connected to the unpassed gas outlet of the first stage separating membrane module, whereby the halide gas can be separated and collected as unpassed gas at a high density and a high collection rate.
Abstract:
A portable filtration assembly includes a housing containing a water inlet port and a water outlet port and a sub-micron filter disposed in the housing having hydrophilic sub-micron rated membrane filter elements. The sub-micron filter is configured to effect a six log reduction of bacteria (99.9999%) and a four log reduction of protozoa (99.99%) at a flow rate between 10-30 mL/sec requiring a pressure of 1.5-10 psi. The assembly also includes structure for venting air through the hydrophilic sub-micron rated membrane filter elements. The assembly may additionally include a monolithic radial flow carbon composite filter also disposed in the housing. The monolithic radial flow carbon composite filter is configured for removing at least 80% of chlorine and at least 90% of lead over a minimum of forty gallons at a flow rate of 10 mL/sec at a pressure drop of 10 psi or less.
Abstract translation:便携式过滤组件包括容纳进水口和出水口的壳体,以及设置在壳体中的具有亲水亚微米级膜过滤元件的亚微米过滤器。 亚微米过滤器被配置成在10-30毫升/秒之间的流速下进行细菌的六对数减少(99.9999%)和原生动物(99.99%)的四对数降低,需要1.5-10psi的压力。 组件还包括通过亲水亚微米级膜过滤器元件排出空气的结构。 该组件还可以包括也设置在壳体中的整体式径流碳复合过滤器。 整体式径向流动碳复合过滤器被配置为在10psi或更低的压降下以10 mL / sec的流速除去至少80%的氯和至少90%的铅至少40加仑。
Abstract:
The present invention relates to a filter element having a non-porous extrusion laminated strip formed on at least one edge and at least one side of a membrane. The strip is used to provide a means for ensuring a good bond between the filter element and the material into which it is potted. The strip is formed by the use of one or more extrusion heads that apply molten or softened polymer to one or both of the surfaces of the filter in a width and height desired. The strip is then subjected to pressure such as through a nip to at least partially embed the polymer strip into the filter pores so as to create a strong mechanical bond between the strip and the filter element. Additionally, it allows for the simultaneous formation of more than one membrane with the edge lamination at the same time.