Abstract:
The disclosure relates to fluid working devices including reciprocating internal combustion engines, compressors and pumps. A number of arrangements for pistons and cylinders of unconventional configuration are described, mostly intended for use in reciprocating internal combustion IC engines operating without cooling. Included are toroidal combustion or working chambers, some with fluid flow through the core of the toroid, pistons reciprocating between pairs of working chambers, tensile valve actuation, tensile links between piston and crankshaft, energy absorbing piston-crank links, crankshafts supported on gas bearings, cylinders rotating in housings, injectors having components reciprocate or rotate during fuel delivery. In some embodiments pistons mare rotate while reciprocating. High temperature exhaust emissions systems are described, including those containing filamentary material, as are procedures for reducing emissions during cold start by means of valves at reaction volume exit. Compound engines having the new engines as a reciprocating stage are described. Improved vehicles, aircraft, marine craft and transmissions adapted to receive or be linked to the improved IV engines are also disclosed.
Abstract:
A switching mechanism capable of switching between a two-stroke operation and a four-stroke operation of an engine as desired, wherein the switching mechanism is switchable between engagement with a first cam lobe for four-stroke operation and a second cam lobe for two-stroke operation.
Abstract:
A system and method to control engine valve timing of an internal combustion engine. Electromechanical valves are controlled to improve engine fuel economy. Further, the method can adjust valve operation to provide air-fuel charge motion and increase combustion stability.
Abstract:
A rotary manifold for a rotor assembly of a cohesion-type drive includes a manifold body extending along a drive axis for rotation thereabout, a first ductwork internal the body for fluid communication with a plurality of first chambers of the drive, and a second ductwork internal the body for fluid communication with a plurality of second chambers of the drive. The second ductwork is in fluid isolation of the first ductwork.
Abstract:
A rotary manifold for a rotor assembly of a cohesion-type drive includes a manifold body extending along a drive axis for rotation thereabout, a first ductwork internal the body for fluid communication with a plurality of first chambers of the drive, and a second ductwork internal the body for fluid communication with a plurality of second chambers of the drive. The second ductwork is in fluid isolation of the first ductwork.
Abstract:
A hybrid internal combustion engine having a cylinder, a piston disposed within the cylinder, the piston constructed and arranged to reciprocate within the cylinder, and a combustion chamber defined by the cylinder and the top of the piston. The hybrid internal combustion engine also includes an exhaust manifold and a heat exchanger disposed within the exhaust manifold. A pump disposed between the heat exchanger and a fluid reservoir is provided to deliver fluid from the reservoir to the heat exchanger, whereby the fluid in the heat exchanger is heated and turned into high pressure gas (HPG) when the combustion gases are exhausted from the combustion chamber via the exhaust manifold. The resulting HPG may then be introduced into the combustion chamber to provide a HPG power stroke.
Abstract:
Valve assembly and method in which a valve member is connected to an elongated lever arm for controlling communication between two chambers in an internal combustion engine. The valve assembly is disposed at least partially within one of the chambers, and the valve member is moved between open and closed by an actuator connected to the lever arm. In some disclosed embodiments, a pilot valve is opened to equalize pressure on both sides of the valve member prior to moving the valve member toward the open position. In others, where a piston in an expansion cylinder is driven by hot, expanding gases from a separate combustion chamber, the exhaust valve is closed before the piston has completed its exhaust stroke, and pressure is allowed to build up in the expansion cylinder to a level corresponding to the pressure in the combustion chamber before the valve member is moved toward the open position.
Abstract:
An eight-stroke engine cycle may include a first stroke forming an intake stroke and including opening an intake valve and providing a first fuel mass to the combustion chamber. The second stroke may form a first compression stroke and the third stroke may form a first expansion stroke including a first power stroke. The fourth and sixth strokes may form a second and third compression strokes and the fifth and seventh strokes may form a second and third expansion strokes. A second fuel mass may be provided to the combustion chamber during the fourth or sixth stroke. The intake valve may be in a closed position during the second and third expansion strokes and an exhaust valve in communication with the combustion chamber may be in a closed position during the second and third compression strokes. The eighth stroke may form an exhaust stroke including opening the exhaust valve.
Abstract:
A system and method to control engine valve timing of an internal combustion engine. Electromechanical valves are controlled to improve engine fuel economy. Further, the method can adjust valve operation to provide air-fuel charge motion and increase combustion stability.
Abstract:
A method to select cylinder and valve operational modes in an internal combustion engine with valves that may be deactivated. A simplified method to select cylinder and valve modes is presented.