Abstract:
The present describes a system and method for determining the concentration of tetrahydrocannabinol (THC) including a tray comprising a first analyte including an infusion of a solvent and cannabis, a light emitting element configured to illuminate the first analyte, a light receiving element configured to receive a first light transmitted through the first analyte, and a control circuit configured to calculate a concentration of tetrahydrocannabinol in the first analyte based at least in part on the first light.
Abstract:
A high throughput biological sample processing system includes a sample carrier with a plurality of wells that progresses through the high throughput biological sample processing system. The system further includes a sample dispensing module, a reagent dispensing module, an accumulation/incubation module, and a detection module. The detection module employs an optical measuring device to encapsulate a biological sample in one of the plurality of wells of the sample carrier and detect energy from the chemistry of the biological sample to determine the amount of an analyte in the biological sample.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A diagnostic assay system including a test device and a scanning device are described. In one implementation, the scanning device includes a source of electromagnetic radiation, an optics assembly, a detector, and a microprocessor disposed within a chassis. The test device and scanning device may be configured to be movable relative to each other during operation of the scanning device.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
The disclosure provides microstructured articles and methods useful for detecting an analyte in a sample. The articles include microwell arrays. The articles can be used with an optical system component in methods to detect or characterize an analyte
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on e.g. microtitration plates and corresponding sample supports. The object of the invention is achieved by providing an optical measurement instrumentation wherein a sample (281-285) is activated (212AS, 218AS) and the emission is detected (291, 292), wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and means (218) directing the activation radiation to the sample as well as in the relative position between the sample and the means (293) receiving the emission radiation from the sample. This can be implemented e.g. by moving (299) the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
Abstract:
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on microtitration plates and corresponding sample supports. An optical measurement instrumentation is provided, a sample is activated and the emission is detected, wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and elements directing the activation radiation to the sample as well as in the relative position between the sample and the elements receiving the emission radiation from the sample. This can be implemented e.g. by moving the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
Abstract:
A multi-well test plate which includes a base and a plurality of well strips. The well strips are removable from the base and the individual wells of each strip are separable. The wells in each strip are joined by T-shaped connecting members which hold the wells in a flat linear array when the well strips are either held in or removed from the base and the T-shaped members are readily severable to permit easy separation of individual wells.