Abstract:
A method includes loading a wafer into a sputtering chamber, followed by depositing a film over the wafer by performing a sputtering process in the sputtering chamber. In the sputtering process, a target is bombarded by ions that are applied with a magnetic field using a magnetron. The magnetron includes a magnetic element over the target, an arm assembly connected to the magnetic element, a hinge mechanism connecting the arm assembly and a rotational shaft. The arm assembly includes a first prong and a second prong at opposite sides of the hinge mechanism. The magnetron further includes a controller that controls motion of the first arm assembly, enabling the first prong to revolve in an orbital motion path about the first hinge mechanism while the second prong remains stationary.
Abstract:
The present application provides a preparation method of a hydrogenated composite film and an optical filter, and relates to the field of optical film filter technologies. The preparation method includes: introducing inert gas and hydrogen into a reaction chamber, and bombarding at least two materials in the reaction chamber and the introduced hydrogen using plasma formed by the inert gas, such that the at least two materials are sputtered onto a substrate and react with hydrogen ions generated by the hydrogen to form a hydrogenated composite film layer. The hydrogenated composite film layer includes at least two materials which are co-sputtered onto the same substrate using the sputtering technology to obtain a required material performance, so as to obtain the hydrogenated composite film layer with a refractive index greater than 3.5 and an extinction coefficient less than 0.005 under a wavelength of 700 nm to 1800 nm.
Abstract:
A sputtering target includes an indium cerium zinc oxide represented by In2CexZnO4+2x, wherein x=0.5˜2. A method for making a sputtering target includes steps of: mixing indium oxide (In2O3) powder, cerium oxide (CeO2) powder, and zinc oxide (ZnO) powder to form a mixture, a molar ratio of indium (In), cerium (Ce), and zinc (Zn) as In:Ce:Zn in the mixture is 2:(0.5 to 2):1; and sintering the mixture at a temperature in a range from about 1250° C. to about 1650° C.
Abstract:
Embodiments of target assemblies for use in substrate processing chambers are provided herein. In some embodiments, a target assembly includes a plate comprising a first side including a central portion and a support portion; a target disposed on the central portion; a plurality of recesses formed in the support portion; and a plurality of pads partially disposed in the plurality of recesses.
Abstract:
Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal Si1-xGex film on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.
Abstract:
A method of fabricating a sputtering target includes preparing a first powder material including at least one of a tin oxide and a mesh-forming oxide; mixing the first powder material and a second powder material comprising carbon or a tin oxide to prepare a mixture; simultaneously performing a primary compression and primary sintering on the mixture in a reduction atmosphere; and simultaneously performing a secondary compression and secondary sintering on the mixture in the reduction atmosphere to prepare the sputtering target.
Abstract:
An electromagnetic wave shielding thin film for shielding from electromagnetic waves generated in an electronic part is provided. The electromagnetic wave shielding thin film includes metal plate which has elastic limit of 1% or more, strength of 1000 MPa or more, and a volume fraction of an amorphous phase of 50% or more.
Abstract:
In some embodiments, a target assembly, for use in a substrate processing chamber having a process shield, may include a backing plate having a first side and an opposing second side, wherein the second side comprises a first surface having a first diameter bounded by a first edge; a target material having a first side bonded to the first surface of the backing plate; wherein the first edge is an interface between the backing plate and the target material; a plurality of slots disposed along an outer periphery of the backing plate extending from the first side of the backing plate toward the second side of the backing plate, wherein the plurality of slots are configured to align the target assembly with respect to the process shield.
Abstract:
A sputtering target includes an indium cerium zinc oxide represented by In2CexZnO4+2x, wherein x=0.5˜2. A method for making a sputtering target includes steps of: mixing indium oxide (In2O3) powder, cerium oxide (CeO2) powder, and zinc oxide (ZnO) powder to form a mixture, a molar ratio of indium (In), cerium (Ce), and zinc (Zn) as In:Ce:Zn in the mixture is 2:(0.5 to 2):1; and sintering the mixture at a temperature in a range from about 1250° C. to about 1650° C.
Abstract:
A deposition system includes a magnetron sputter deposition source that includes a backing frame that includes a window and a closed loop around the window. The backing frame includes inside surfaces towards the window, one or more sputtering targets mounted on inside surfaces of the backing frame, and one or more magnets mounted on outside surfaces of the backing frame. The one or more sputtering targets include sputtering surfaces that define internal walls of the window. The one or more magnets can produce a magnetic field near the one or more sputtering surfaces. A substrate includes a deposition surface oriented towards the window in the backing frame. The deposition surface receives sputtering material(s) from the one or more sputtering targets.