Abstract:
For ion mobility spectrometry applications, a desired shape of a sensor structure may be created by forming a desired shape from a ceramic material, such as aluminum nitride. In various embodiments, the sensor structure may be formed using discrete individual ceramic sheets and/or from a preformed ceramic tube. Via holes are formed into the sensor structure to provide for efficient circuitry configurations of the IMS drift tube and/or providing electrical connections between the interior and exterior of the drift tube.
Abstract:
A method of interfacing atmospheric pressure ion sources, including electrospray and desorption electrospray ionization sources, to mass spectrometers, for example miniature mass spectrometers, in which the ionized sample is discontinuously introduced into the mass spectrometer. Discontinuous introduction improves the match between the pumping capacity of the instrument and the volume of atmospheric pressure gas that contains the ionized sample. The reduced duty cycle of sample introduction is offset by operation of the mass spectrometer under higher performance conditions and by ion accumulation at atmospheric pressure.
Abstract:
There are provided a bio-chip for secondary ion mass spectrometry and a method of fabricating the same, the bio-chip, which is a bio-chip for analyzing a biochemical material using the secondary ion mass spectrometry, including: a substrate; and core-shell particles positioned above substrate, wherein the core-shell particles each include a metal nanoparticle as a core and a metal shell surrounding the metal nanoparticle.
Abstract:
Methods and devices for detecting a target substance on a subject without contacting the subject are disclosed. At least one air jet blows analyte from a surface of the subject into an airflow, the airflow entraining the analyte. A desorption channel desorbs molecules from analyte in a portion of the airflow travelling through the desorption channel. An ionizer forms ions from vapour molecules in the portion of the airflow. At least one mass spectrometer analyzes the ions to detect the target substance. The flow travels without interruption from the subject to the at least one mass spectrometer. The desorption channel causes a sufficient quantity of molecules to desorb from the analyte to enable the at least one mass spectrometer to detect the target substance.
Abstract:
Closed containers which are filled with a consumer product are tested on leakiness by means of mass spectrometry (10) in that an impact (AN(P)) by the consumer product (P) upon the surrounding atmosphere (A(P)) of the container to be leak tested is monitored by the mass spectrometry (10).
Abstract:
Provided is a novel method for amplifying mass spectrometric signals. A novel method for detecting signals of a target molecule includes: allowing a sample, which comprises a target molecule, to contact a gold particle having a surface modified to selectively bind the target molecule, allowing a low molecular weight molecule engrafted to the gold particle generate mass spectrometric signals after the interaction, e.g., binding, between the gold particle and the target molecule, and amplifying the mass spectrometric signals to generate much mass spectrometric signals of the low molecular weight molecule even when trace amounts of the target molecule are present. An assay system using the method and the gold particle prepared in the method are provided. The method amplifies signals of the target molecule without pretreatment of a sample, making it possible to measure the target molecule simply and precisely.
Abstract:
In order to provide an analysis method that is capable of determining a glycan structure with high detection sensitivity, a method of the present invention includes the steps of: carrying out triple quadrupole mass spectrometry at various values of CID energy; creating an energy-resolved profile including yield curves representing relationships between (i) a value of the CID energy and (ii) measured amounts of specific types of product ions; preparing a reference profile, and identifying a glycan structure of a test material by comparing the energy-resolved profile with the reference profile.
Abstract:
To provide a method that reduces an influence of dependence of an ionizing beam in an incident direction or uneven irradiation to a sample on a result of mass spectrometry, and can measure mass distribution with high reliability. A mass distribution measuring method according to the present invention includes: changing a direction of irradiating the ionizing beam to a sample surface; acquiring a plurality of mass distribution images in a plurality of incident directions; performing image transform of the mass distribution images according to an angle formed by an incident direction of the ionizing beam and a substrate surface; synthesizing the plurality of transformed images; and outputting the synthesized mass distribution images.
Abstract:
Labeling reagents, sets of labeling reagents, and labeling techniques are provided for the relative quantitation, absolute quantitation, or both, of ketone or aldehyde compounds including, but not limited to, analytes comprising steroids or ketosteroids. The analytes can be medical or pharmaceutical compounds in biological samples. Methods for labeling, analyzing, and quantifying ketone or aldehyde compounds are also disclosed as are methods that also use mass spectrometry.
Abstract:
Provided are methods for determining the amount of one or more of one or more of epinephrine (E), norepinephrine (NE), and dopamine (D) in a sample using mass spectrometry. The methods generally involve ionizing one or more of E, NE, and D in a sample and detecting and quantifying the amount of the ion to determine the amount of one or more of E, NE, and D in the sample.