Abstract:
A Segmented Voltage Continuous-Time Digital-to-Analog Converter is disclosed which provides the benefits of segmentation while minimizing the associated disadvantages. The segmented digital to analog converter disclosed here features, in particular, inherent monotonicity and low transition glitches. The segmentation technique is based on coupling an array of switchable current sources and at least one current divider into a resistor string, providing, at least, three levels of segmentation.
Abstract:
Apparatus and methods for autozero amplifiers are provided herein. In certain configurations, an autozero amplifier includes at least three transconductance stages and an autozero timing control circuit configured to control an autozero sequence of the transconductance stages. The autozero timing control circuit can stagger autozeroing of the transconductance stages, such that a relatively small amount of the amplifier's amplification circuitry is connected to or disconnected from the amplifier's signal path at any given time. For example, in certain configurations, when one of the transconductance stages in autozeroed over a particular time interval, the remaining transconductance stages can operate in parallel to provide amplification during that time interval.
Abstract:
This disclosure relates to temperature stabilization of at least a portion of an amplifier, such as a logarithmic amplifier, and/or a band gap reference circuit. In one aspect, one or more stages of an amplifier, a heater, and a temperature sensor are included in a semiconductor material and surrounded by thermally insulating sidewalls.
Abstract:
Aspects of this disclosure relate to a receiver for digital predistortion (DPD). The receiver includes an analog-to-digital converter (ADC) having a sampling rate that is lower than a signal bandwidth of an output of a circuit having an input that is predistorted by DPD. DPD can be updated based on feedback from the receiver. According to certain embodiments, the receiver can be a narrowband receiver configured to observe sub-bands of the signal bandwidth. In some other embodiments, the receiver can include a sub-Nyquist ADC.
Abstract:
In an isolation system, different analog to digital converters (“ADCs”) are provided on a first side of an isolation barrier. Outputs from the ADCs may be merged into a common data stream and communicated across the isolation barrier by a single isolation device. The ADCs may sample independent signals or may sample a common signal. When the ADCs sample a common signal, the system may monitor the input signal for fault conditions. During no fault operation, results of an analog-to-digital conversion may be communicated across an isolation barrier by an isolation device. During a fault condition, data representing the fault condition may replace the ADC data in communication across the isolation barrier. Fault conditions may be signaled by unique data patterns that can be distinguished from ADC data.
Abstract:
An ultra-low-power supervisory circuits can employ floating gate transistors. In an example, a supervisory circuit can include a reset output circuit, a voltage comparator circuit configured to reset the reset output circuit when a first input voltage falls below a reference voltage, and a watchdog circuit configured to receive a watchdog signal and to reset the reset output circuit if the watchdog signal does not transition within a predetermined watchdog interval. The voltage comparator circuit can include a first floating gate transistor circuit configured to establish a reference current for generating the reference voltage, and the watchdog circuit can include a second floating gate transistor circuit for selecting the predetermined watchdog interval.
Abstract:
Inductive components, such as transformers, can be improved by the inclusion of a magnetic core. However the benefit of having a core is lost if the core enters magnetic saturation. One way to avoid saturation is to provide a bigger core, but this is costly in the context of integrated electronic circuits. The inventor realized that the flux magnetic flux density varies with position in a magnetic core within an integrated circuit, causing parts of the magnetic core to saturate earlier than other parts. This reduces the ultimate performance of the magnetic core. This disclosure provides structures that delay the onset of early saturation, enabling a transformer to handle more power.
Abstract:
An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by decimalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value. In some embodiments, the integrated circuit further includes a scaling module configured to scale the component value based on scaling parameters.
Abstract:
A device to detect an electrical signal is provided. The device includes sensing, output, and pull-down nodes. The device includes a pull-down circuit having a native metal-oxide-semiconductor field-effect transistor (MOSFET) to pull down the output node to approximately a voltage of the pull-down node. The device includes a switch circuit having a junction field-effect transistor (JFET). The JFET turns on the pull-down circuit in response to a voltage of the sensing node being less than a first threshold. The JFET also turns off the pull-down circuit in response to the voltage of the sensing node being greater than the first threshold.
Abstract:
A MEMS switch has a base formed from a substrate with a top surface and an insulator layer formed on at least a portion of the top surface. Bonding material secures a cap to the base to form an interior chamber. The cap effectively forms an exterior region of the base that is exterior to the interior chamber. The MEMS switch also has a movable member (in the interior chamber) having a member contact portion, an internal contact (also in the interior chamber), and an exterior contact at the exterior region of the base. The contact portion of the movable member is configured to alternatively contact the interior contact. A conductor at least partially within the insulator layer electrically connects the interior contact and the exterior contact. The conductor is spaced from and electrically isolated from the bonding material securing the cap to the base.