Abstract:
The disclosure generally relates to compositions and methods for the production of nucleic acid molecules. In some aspects, the invention allows for the microscale generation of nucleic acid molecules, optionally followed by assembly of these nucleic acid molecules into larger molecules. In some aspects, the invention allows for efficient production of nucleic acid molecules (e.g., large nucleic acid molecules such as genomes).
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
Provided herein are collections of matched biological reagents selected from a larger collection of biological reagents, wherein the collection of matched biological reagents relate to a biological element. Also provided are methods for selling an isolated biomolecule or biological research reagent in a collection of matched biological reagents, and methods for selecting an isolated biomolecule or biological research reagent from a collection of biological reagents.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.
Abstract:
The present invention provides improved methods for the amplification of nucleic acid molecules. Methods for amplifying target polynucleotides, including mRNA, using oligonucleotides, DNA and RNA polymerases are provided. The invention further provides compositions and kits for practicing the methods, as well as methods which use the amplification products.
Abstract:
Methods, compositions, systems, apparatuses and kits comprising modified proteins, particularly modified nucleic acid-binding proteins with altered buffering properties are provided. For example, in some embodiments, methods of forming modified proteins including one or more amino acid modifications to achieve desired pKa values are described. Furthermore, the invention provides methods for using such modified proteins in ion-producing reactions, such as ion-based nucleic acid sequencing reactions.
Abstract:
A fluid manifold system includes a manifold having at least portions of opposing flexible sheets welded together to form a fluid flow path therebetween, a fluid inlet communicating with the fluid flow path. A plurality of receiving containers are in fluid communication with the fluid flow path of the manifold, each receiving container bounding a compartment. The receiving containers can be formed integral with the manifold by welding together a second portion of the opposing flexible sheets or can comprise separate containers that are coupled to the manifold.
Abstract:
Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
Abstract:
In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A material defines an opening extending to the upper surface of the floating gate conductor. The material comprises a first dielectric underlying a second dielectric. A conductive element contacts the upper surface of the floating gate conductor and extends a distance along a sidewall of the opening, the distance defined by a thickness of the first dielectric.