摘要:
An interconnect structure of an integrated circuit includes a low-k dielectric layer over a semiconductor substrate, a conductor in the low-k dielectric layer, and a dielectric transition layer between the low-k dielectric layer and the conductor, wherein the dielectric transition layer has a thickness of less than about 50 Å.
摘要:
A method of lowering the dielectric constant of an organosilicon low k dielectric layer while improving the hardness and thermal stability is provided. A deposited layer of carbon doped oxide, HSQ, or MSQ is cured and treated with a He plasma which improves hardness for a subsequent CMP step and lowers the dielectric constant. There is no loss of H2O or CH4 during the He treatment. The low k dielectric layer is then treated with a H2 plasma which converts some of the Si—O and Si—CH3 bonds near the surface to Si—H bonds, thereby further lowering the dielectric constant and increasing thermal stability that improves breakdown resistance. Moisture uptake is also reduced. The method is especially useful for interconnect schemes with deep sub-micron ground rules. Surprisingly, the k value obtained from two different plasma treatments is lower than when two He treatments or two H2 treatment are performed.
摘要翻译:提供降低有机硅低k电介质层的介电常数同时提高硬度和热稳定性的方法。 掺杂碳的氧化物,HSQ或MSQ的沉积层用He等离子体固化和处理,其提高后续CMP步骤的硬度并降低介电常数。 在He处理期间,没有H 2 O 2或CH 4 O 3的损失。 然后用H 2 O 2等离子体处理低k电介质层,其将表面附近的一些Si-O和Si-CH 3键转化为Si-H键, 从而进一步降低介电常数并增加热稳定性,从而提高耐击穿性。 吸湿也减少。 该方法对于具有深亚微米基准规则的互连方案特别有用。 令人惊讶的是,从两种不同的等离子体处理获得的k值低于当执行两个He处理或两个H 2 N 2处理时。
摘要:
An ultra-violet (UV) protection layer is formed over a semiconductor workpiece before depositing a UV curable dielectric layer. The UV protection layer prevents UV light from reaching and damaging underlying material layers and electrical devices. The UV protection layer comprises a layer of silicon doped with an impurity, wherein the impurity comprises O, C, H, N, or combinations thereof. The UV protection layer may comprise SiOC:H, SiON, SiN, SiCO:H, combinations thereof, or multiple layers thereof, as examples.
摘要:
Attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) metal surface cleanliness monitoring is disclosed. A metal surface of a semiconductor die is impinged with an infrared (IR) beam, such as can be accomplished by using an ATR technique. The IR beam as reflected by the metal surface is measured. For instance, an interferogram of the reflected IR beam may be measured. A Fourier transform of the interferogram may also be performed, in accordance with an FTIR technique. To determine whether the metal surface is contaminated, the IR beam as reflected is compared to a reference sample. For example, the Fourier transform of the interferogram may be compared to the reference sample. If there is deviation by more than a threshold, the metal surface may be concluded as being contaminated.
摘要:
A method of lowering the dielectric constant of an organosilicon low k dielectric layer while improving the hardness and thermal stability is provided. A deposited layer of carbon doped oxide, HSQ, or MSQ is cured and treated with a He plasma which improves hardness for a subsequent CMP step and lowers the dielectric constant. There is no loss of H2O or CH4 during the He treatment. The low k dielectric layer is then treated with a H2 plasma which converts some of the Si—O and Si—CH3 bonds near the surface to Si—H bonds, thereby further lowering the dielectric constant and increasing thermal stability that improves breakdown resistance. Moisture uptake is also reduced. The method is especially useful for interconnect schemes with deep sub-micron ground rules. Surprisingly, the k value obtained from two different plasma treatments is lower than when two He treatments or two H2 treatment are performed.
摘要:
A method of increasing the cracking threshold of a low-k material layer comprising the following steps. A substrate having a low-k material layer formed thereover is provided. The low-k material layer having a cracking threshold. The low-k material layer is plasma treated to increase the low-k material layer cracking threshold. The plasma treatment including a gas that is CO2, He, NH3 or combinations thereof.
摘要:
A water treating apparatus for raising oxygen solubility in high-purity drinking water includes a high pressure pump for conveying high-purity drinking water treated by an R. O. treatment, or a U. F. treatment, or a distillation treatment, or a purity treatment into a closed container. An ozone injecter injects ozone in the drinking water conveyed by the high pressure pump. A cooler affixed around the closed container cools the water stored therein to a preset value. A supersonic vibrator stirs the stored drinking water so as to raise oxygen solubility in the drinking water stored in the closed container, and to prolong period of time for sterilization.
摘要:
A method includes forming a metal hard mask over a low-k dielectric layer. The step of forming the metal hard mask includes depositing a sub-layer of the metal hard mask, and performing a plasma treatment on the sub-layer of the metal hard mask. The metal hard mask is patterned to form an opening. The low-k dielectric layer is etched to form a trench, wherein the step of etching is performed using the metal hard mask as an etching mask.
摘要:
A method includes etching a low-k dielectric layer on a wafer to form an opening in the low-k dielectric layer. An amount of a detrimental substance in the wafer is measured to obtain a measurement result. Process conditions for baking the wafer are determined in response to the measurement result. The wafer is baked using the determined process conditions.
摘要:
An ultra-violet (UV) protection layer is formed over a semiconductor workpiece before depositing a UV curable dielectric layer. The UV protection layer prevents UV light from reaching and damaging underlying material layers and electrical devices. The UV protection layer comprises a layer of silicon doped with an impurity, wherein the impurity comprises O, C, H, N, or combinations thereof. The UV protection layer may comprise SiOC:H, SiON, SiN, SiCO:H, combinations thereof, or multiple layers thereof, as examples.