Abstract:
The continuous conduction mode (CCM) boost voltage power factor correction apparatus with an average-current control mode of the present invention uses resettable integrators to integrate the difference voltage signal outputted from the voltage error amplifier and the input current signal obtained from detection. The integration results are then compared to control the duty cycle of the switch. Thereby, the input current and the input voltage in the AC/DC electrical power converter have a proportion relation and their phases are the same as each other. The components used in this control method are simpler than the PFC circuit of the prior art. It is easy to integrate in one chip with fewer pins. The apparatus of the present invention has a high power factor and a low total harmonic distortion (THD).
Abstract:
A pulse width modulation device with a power saving mode controlled by an output voltage feedback hysteresis circuit is used in a power supply. The present invention comprises a hysteresis comparison circuit extracting a feedback voltage, a high threshold voltage and a low threshold voltage, and the voltages are executed by a comparison and hysteresis operation to a output blanking signal, a PWM control unit extracting a detecting current signal and the feedback voltage to output a modulation signal after a comparison operation is executed; an OR gate circuit connected to the hysteresis comparison circuit and the PWM control unit for receiving the blanking signal and the modulation signal to output a reset signal; and a synchronization signal output unit connected to the OR gate circuit for receiving the reset signal and an oscillation signal to output the drive signal.
Abstract:
Dynamic Random Access Memory (DRAM) cells are formed in a P well formed in a biased deep N well (DNW). PMOS transistors are formed in N wells. The NMOS channels stop implant mask is modified not to be a reverse of the N well mask in order-to block the channels stop implant from an N+ contact region used for DNW biasing. In DRAMS and other integrated circuits, a minimal spacing requirement between a well of an integrated circuit on the one hand and adjacent circuitry on the other hand is eliminated by laying out the adjacent circuitry so that the well is located adjacent to a transistor having an electrode connected to the same voltage as the voltage that biases the well. For example, in DRAMs, the minimal spacing requirement between the DNW and the read/write circuitry is eliminated by locating the DNW next to a transistor precharging the bit lines before memory accesses. One electrode of the transistor is connected to a precharge voltage. This electrode overlaps the DNW which is biased to the same precharge voltage. This electrode provides the DNW N+ contact region.
Abstract:
A method for forming within a substrate employed within a microelectronics fabrication a field effect transistor with attenuated drain leakage current. There is provided a silicon substrate within which are fabricated nMOS field effect transistors (FET) with lightly-doped n-type drain regions (nLDD) employing arsenic (As) dopant. There is then implanted indium (In) dopant atoms adjacent to the As diffused junction to form a p-type pocket therein. There is then avoided the customary high temperature rapid thermal annealing (RTA) step and instead employed a thermal annealing for 2 hours at 750 degrees centigrade, whereupon the implanted indium atom undergo transient enhanced diffusion (TED) to form a graded junction profile, resulting in attenuated drain leakage current and no increased reverse short channel effect from the strong segregation of indium into silicon oxide.
Abstract:
Within a method for fabricating a microelectronic fabrication there is first provided a substrate. There is then formed over the substrate a microelectronic device. There is then formed over the microelectronic device a passivating dielectric layer formed from a passivating dielectric material selected from the group consisting of fluorosilicate glass (FSG) passivating dielectric materials, atmospheric pressure chemical vapor deposited (APCVD) passivating dielectric materials, subatmospheric pressure chemical vapor deposited (SACVD) passivating dielectric materials and spin-on-glass (SOG) passivating dielectric materials to form from the microelectronic device a passivated microelectronic device. Finally, there is then annealed thermally, while employing a thermal annealing method employing an atmosphere comprising hydrogen, the passivated microelectronic device to form a stabilized passivated microelectronic device. The method is a “pure H2 (100%)” alloy recipe to use after contact opening or metal-1 formation.
Abstract:
The present invention provides a process and a structure for increasing a capacitance of a stack capacitor. The process includes steps of: a) forming a contact hole on a silicon substrate having an oxide layer, b) forming a polysilicon contact plug of a first polysilicon layer in the contact hole; c) forming a second gibbous polysilicon layer on a surface of the contact plug, and d) forming a third polysilicon layer above the gibbous polysilicon layer and a portion of the oxide layer to form the stack capacitor, wherein the gibbous polysilicon layer increases the capacitance of the stack capacitor.
Abstract:
A method for forming stacked capacitors for DRAMs using a single photoresist mask and having bottom electrodes self-aligned to node contacts is achieved. A planar silicon oxide (SiO.sub.2) first insulating layer is formed over device areas. A first silicon nitride (Si.sub.3 N.sub.4) hard mask layer is deposited and a second insulating layer is deposited. First openings are etched, partially into the first insulating layer, for the capacitor bottom electrodes. A second Si.sub.3 N.sub.4 layer is deposited and etched back to form sidewall spacers in the first openings. The Si.sub.3 N.sub.4 hard mask and spacers are used to etch second openings (node contacts) in the first insulating layer, self-aligned in the first openings and to the source/drain contact areas. A first polysilicon layer is deposited and etched back to form recessed polysilicon plugs in the first openings. A third Si.sub.3 N.sub.4 layer is deposited and etched back to form sidewall spacers on the plugs in the first openings and is used as a mask to etch the polysilicon to form the vertical sidewalls of the bottom electrodes self-aligned to the node contacts. The first insulating layer is recessed to expose the bottom electrodes. An interelectrode dielectric layer is formed on the bottom electrodes, and a patterned second polysilicon layer is used for the top electrodes.
Abstract translation:实现了使用单个光致抗蚀剂掩模形成用于DRAM的堆叠电容器并且具有与节点接触自对准的底部电极的方法。 在器件区域上形成平面氧化硅(SiO 2)第一绝缘层。 沉积第一氮化硅(Si 3 N 4)硬掩模层并沉积第二绝缘层。 对于电容器底部电极,第一开口部分地被蚀刻到第一绝缘层中。 第二Si 3 N 4层被沉积并回蚀刻以在第一开口中形成侧壁间隔物。 Si 3 N 4硬掩模和间隔物用于蚀刻第一绝缘层中的第二开口(节点接触),在第一开口中和源/漏接触区域中自对准。 沉积第一多晶硅层并将其回蚀刻以在第一开口中形成凹陷的多晶硅塞。 沉积第三个Si 3 N 4层并回蚀刻以在第一开口中的插塞上形成侧壁间隔物,并且用作掩模以蚀刻多晶硅以形成与节点接触件自对准的底部电极的垂直侧壁。 第一绝缘层凹进露出底部电极。 在底部电极上形成电极间电介质层,并且将图案化的第二多晶硅层用于顶部电极。
Abstract:
A method for fabricating a very narrow electrical isolation trench in a semiconductor substrate for isolating the individual field effect transistors (FETs) is achieved. This method eliminates the oxide encroachment into the device area associated with LOCOS techniques, thereby increasing device density. The method involves etching trenches, less than one half micrometer in width in the silicon substrate and forming sidewall spacer in the trench. The trench is filled with doped polysilicon and planarized, forming a trench which is planar with the device region. These isolation trenches are made in both N and P-wells for fabricating CMOS circuits having ULSI densities.
Abstract:
A transistor includes a notched fin covered under a shallow trench isolation layer. One or more notch may be used, the size of which may vary along a lateral direction of the fin. In some embodiments, The notch is formed using anisotropic wet etching that is selective according to silicon orientation. Example wet etchants are tetramethylammonium hydroxide (TMAH) or potassium hydroxide (KOH).
Abstract:
An integrated circuit includes a first diffusion area for a first type transistor. The first type transistor includes a first drain region and a first source region. A second diffusion area for a second type transistor is spaced from the first diffusion area. The second type transistor includes a second drain region and a second source region. A gate electrode continuously extends across the first diffusion area and the second diffusion area in a routing direction. The first metallic layer is electrically coupled with the first source region. The first metallic layer and the first diffusion area overlap with a first distance. A second metallic layer is electrically coupled with the first drain region and the second drain region. The second metallic layer and the first diffusion area overlap with a second distance. The first distance is larger than the second distance.