Abstract:
A MEMS speaker that may include a membrane positioned in a first plane, wherein the membrane may be configured to oscillate at a first frequency thereby generating an ultrasonic acoustic signal; and an acoustic modulator that may include a blind and a shutter; wherein the blind may be positioned in a second plane; wherein the shutter may be positioned in a third plane; wherein the first plane, the second plane and the third plane may be substantially separated from each other; and wherein the acoustic modulator may be configured to (a) receive or generate a shutter control signal and a blind control signal, and (b) modulate, in response to the shutter control signal and the blind control signal, the ultrasonic acoustic signal such that an audio signal may be generated.
Abstract:
A method of charge reuse, the method may include repeating the steps of: electrically coupling a first group of capacitive loads to a second group of capacitive loads; wherein the capacitive loads of the first group and of the second group are Microelectromechanical systems (MEMS) capacitive loads or Nanoelectromechanical systems (NEMS) capacitive loads; charging the second group with a first charge provided from the first group; electrically disconnecting the first group from the second group; operating the second group while using the first charge; electrically coupling the first group to the second group; charging the first group with a second charge provided from the second group; electrically disconnecting the first group from the second group; and operating the first group while using the second charge.
Abstract:
A scheme is described that provides for a low latency, glitch free chip interface that does not require a clock. This invention handles input transitions that are skewed and also input transitions that are momentary. A change in an input state initiates a pulse that propagates through the system and samples the new input state after a delay. If there is a difference between the sampled input state and the present input state, then a new pulse is initiated in order to avoid any illegal transitions at the output.
Abstract:
A digital to analog converter that may include a digital gain block; an analog gain block; a digital to analog conversion (DAC) block and a controller that is configured to: determine a digital gain factor, selected out of multiple digital gain factors, of the digital gain block and an analog gain factor, selected out of multiple analog gain factors of the analog gain block; wherein the DAC block is preceded by the digital gain block and is followed by the analog gain block; wherein the digital gain block is configured to multiply a digital input signal by the digital gain factor to provide an intermediate digital signal; wherein the DAC block is configured to convert the intermediate digital signal to a converted analog signal; and wherein the analog gain block is configured to multiply the converted analog signal by the analog gain factor to provide an output signal; wherein an increment of the analog gain factor results in a decrement of the digital gain factor.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A coin cell powered device includes a regulator, a transmitter and a charge pump. The transmitter is configured to transmit signals during a transmission period while receiving power from the regulator, the power originated from an external capacitor. The charge pump is configured to perform, during a charging period, a charging process for charging the external capacitor to a charged voltage that exceeds a voltage of a cell coin, wherein the charging process may include iterations of (a) charging a charge pump capacitor by the coin cell, and (b) discharging the charge pump capacitor thereby charging the external capacitor. The capacitance of the charge pump capacitor is a fraction of a capacitance of the external capacitor. The duration of the charging period exceeds a duration of the transmission period.
Abstract:
A method for in-ear detection, the method may include transmitting test signals, by a speaker of an earbud, during a test period, and while the earbud is operating at a first operational mode, wherein the test signals comprise at least one first test signal within a first frequency range, at least one second test signal within a second frequency range, and at one third test signal within a third frequency range; wherein the first frequency range, the second frequency range and the third frequency range differ from each other and are within a human auditory range; generating, by a feedback microphone of the earbud, sensed information that is indicative of audio signals sensed by the feedback microphone as a result of the transmitting of the test signals; and determining whether the earbud is located within an ear of a person, wherein the determining is based on the sensed information and a reference out of ear spectrum.
Abstract:
This disclosure provides methods, devices, and systems for videoconferencing. The present implementations more specifically relate to audio signal processing techniques that can be used to identify speakers in a videoconference. In some aspects, an audio signal processor may map each speaker in a videoconference to a respective spatial direction and transform the audio signals received from each speaker using one or more transfer functions associated with the spatial direction to which the speaker is mapped. The audio signal processor may further transmit the transformed audio signals to an audio output device that emits sounds waves having a directionality associated with the transformation. For example, the audio signal processor may apply one or more head-related transfer functions to the audio signals received from a particular speaker so that the sound waves emitted by the audio output device are perceived as originating from the spatial direction to which the speaker is mapped.
Abstract:
A method and a voice processor that includes (i) an input that is configured to receive of audio signals that represent audio, (ii) a wake word detection circuit, (iii) a first buffer that is configured to store at least wake word signals and prebuffer signals, and (iv) a communication module that is configured to (a) output, over an interrupt port, an interrupt request to an application processor, following a detection of the wake word signals, (b) following an acceptance of the application processor to receive content, access the first buffer and retrieve the prebuffer signals and the wake word signals; and (b) output the content, over the I2S port, to the application processor. The content includes the wake word signals, the prebuffer signals, and query or command signals.