Abstract:
Provided is a semiconductor integrated circuit. The semiconductor integrated circuit includes a semiconductor pattern disposed on a substrate and including an optical waveguide part and a pair of recessed portions. The optical waveguide part has a thickness ranging from about 0.05 m to about 0.5 μm. The recessed portions are disposed on both sides of the optical waveguide part and have a thinner thickness than the optical waveguide part. A first doped region and a second doped region are disposed in the recessed portions, respectively. The first and second doped regions are doped with a first conductive type dopant and a second conductive type dopant, respectively. An intrinsic region is formed in at least the optical waveguide part to contact the first and second doped regions.
Abstract:
Provided is a photodetector converting an optical signal into an electrical signal. The photodetector includes: a plurality of semiconductor layers sequentially stacked on a substrate; a plurality of photoelectric conversion units formed in the semiconductor layers, respectively, and having different spectral sensitivities from each other; and buffer layers interposed between the adjacent semiconductor layers, respectively. Each of the buffer layers alleviates stress between the adjacent semiconductor layers.
Abstract:
Provided is a photonics device including at least two arrayed waveguide grating structures. Each of the arrayed waveguide grating structures of the photonics device includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler to the output star coupler. Each of the arrayed waveguides includes at least one first section having a high confinement factor and at least two second sections having a low confinement factor. The first sections of the arrayed waveguides have the same structure.
Abstract:
Provided are an electrical and/or electronic system protecting circuit using an abrupt metal-insulator transition (MIT) device which can effectively remove high-frequency noise with a voltage greater than a rated standard voltage received via a power line or a signal line of an electrical and/or electronic system, and the electrical and/or electronic system including the electrical and/or electronic system protecting circuit. The abrupt MIT device of the electrical and/or electronic system protecting circuit abrupt is connected in parallel to the electrical and/or electronic system to be protected from the noise. The electrical and/or electronic system protecting circuit bypasses toward the abrupt MIT device most of the noise current generated when the voltage greater than the rated standard voltage is applied, thereby protecting the electrical and/or electronic system.
Abstract:
A method of growing a germanium (Ge) epitaxial thin film having negative photoconductance characteristics and a photodiode using the same are provided. The method of growing the germanium (Ge) epitaxial thin film includes growing a germanium (Ge) thin film on a silicon substrate at a low temperature, raising the temperature to grow the germanium (Ge) thin film, and growing the germanium (Ge) thin film at a high temperature, wherein each stage of growth is performed using reduced pressure chemical vapor deposition (RPCVD). The three-stage growth method enables formation of a germanium (Ge) epitaxial thin film characterized by alleviated stress on a substrate, a lowered penetrating dislocation density, and reduced surface roughness.
Abstract:
Provided are semiconductor opto-electronic integrated circuits and methods of forming the same. The semiconductor opto-electronic integrated circuit includes: an optical waveguide disposed on a substrate and including an input terminal and an output terminal; an optical grating formed on the optical waveguide; and an optical active device disposed on the optical grating and receiving an optical signal from the optical waveguide through the optical grating to modulate the optical signal.
Abstract:
Provided are a superluminescent diode with a high optical power and a broad wavelength band, and a method of fabricating the same. The superluminescent diode includes: at least one high optical confinement factor (HOCF) region; and at least one low optical confinement factor (LOCF) region having a lower optical confinement factor than the HOCF region. The method includes obtaining a difference of optical confinement factors in the HOCF region and the LOCF region through a selective area growth method, the selective area growth method using a deposition thicknesses difference of thin layers according to a width difference of openings that expose a substrate.
Abstract:
A waveguide structure is provided. The waveguide structure includes: a slot channel waveguide including first and second patterns, which are spaced apart from each other to define a slot; a first upper layer covering at least a portion of the slot channel waveguide; and a second upper layer covering the remaining portion of the slot channel waveguide. A thermo-optic coefficient (TOC) of the channel waveguide times a TOC of the second upper layer is a negative number.
Abstract:
Provided is a wavelength-division-multiplexing (WDM) device. The device includes an input waveguide, a plurality of ring resonators around the input waveguide, a plurality of output waveguides around the plurality of ring resonators, respectively, and at least one tuning clad pattern adjacent to at least one of the ring resonators, the tuning clad pattern covering a portion of a surface of a corresponding ring resonator.
Abstract:
Provided are a method and structure for optical connection between an optical transmitter and an optical receiver. The method includes the steps of: forming on a substrate a light source device, an optical detection device, an optical transmission unit electrically connected with the light source device, and an optical detection unit electrically connected with the optical detection device; preparing a flexible optical transmission-connection medium to optically connect the light source device with the optical detection device; cutting the prepared optical transmission-connection medium and surface-finishing it; and connecting one end of the surface-finished optical transmission-connection medium with the light source device and the other end with the optical detection device. Fabrication of an optical package having a 3-dimensional structure is facilitated and fabrication time is reduced, thus improving productivity. In addition, since the optical transmission-connection medium is directly connected with the light source device and the optical detection device, a polishing operation or additional connection block is not required, thus facilitating mass production.