Abstract:
A phase changeable memory unit includes a lower electrode, an insulating interlayer structure having an opening, a phase changeable material layer and an upper electrode. The lower electrode is formed on a substrate. The insulating interlayer structure has an opening and is formed on the lower electrode and the substrate. The opening exposes the lower electrode and has a width gradually decreasing downward. The phase changeable material layer fills the opening and partially covers an upper face of the insulating interlayer structure. The upper electrode is formed on the phase changeable material layer.
Abstract:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
Abstract:
A method of fabricating a phase change memory device includes forming an opening in a first layer, forming a phase change material in the opening and on the first layer, heating the phase change material to a first temperature that is sufficient to reflow the phase change material in the opening, wherein the first temperature is less than a melting point of the phase change material, and, after heating the phase change material to the first temperature, patterning the phase change material to define a phase change element in the opening.
Abstract:
A phase-changeable memory device includes a substrate having a field effect transistor therein and a phase-changeable material electrically coupled to a source region of the field effect transistor. The phase-changeable material includes a chalcogenide composition containing at least germanium, bismuth and tellurium and at least one dopant selected from a group consisting of nitrogen and silicon.
Abstract:
A phase-changeable memory device includes a phase-changeable material pattern and first and second electrodes electrically connected to the phase-changeable material pattern. The first and second electrodes are configured to provide an electrical signal to the phase-changeable material pattern. The phase-changeable material pattern includes a first phase-changeable material layer and a second phase-changeable material layer. The first and second phase-changeable material patterns have different chemical, physical, and/or electrical characteristics. For example, the second phase-changeable material layer may have a greater resistivity than the first phase-changeable material layer. For instance, the first phase-changeable material layer may include nitrogen at a first concentration, and the second phase-changeable material layer may include nitrogen at a second concentration that is greater than the first concentration. Related devices and fabrication methods are also discussed.
Abstract:
In one embodiment, a phase-change memory device has an oxidation barrier layer to protect against memory cell contamination or oxidation and a method of manufacturing the same. In one embodiment, a semiconductor memory device comprises a molding layer overlying a semiconductor substrate. The molding layer has a protrusion portion vertically extending from a top surface thereof. The device further includes a phase-changeable material pattern adjacent the protrusion portion and a lower electrode electrically connected to the phase-changeable material pattern.
Abstract:
Provided is a method for fabricating a semiconductor device. The method includes forming an interlayer insulating layer on a substrate, the interlayer insulating layer including a first trench; forming a high-k dielectric layer in the first trench; successively forming a diffusion layer and a blocking layer on the high-k dielectric layer; subsequently performing annealing; after the annealing, successively removing the blocking layer and the diffusion layer; forming a first barrier layer on the high-k dielectric layer; successively forming a work function adjustment layer and a gate conductor on the first barrier layer; and forming a capping layer on the gate conductor.
Abstract:
A shock absorbing shoe with a triangle shock absorbing space, the shoe having an outsole and a midsole, wherein the midsole is divided into upper and lower midsoles, a plurality of upper seating holes provided on opposite sides of the upper midsole behind an area corresponding to an arch region of a foot sole, a plurality of lower seating holes provided on opposite sides of the lower midsole. The shoe includes a shock absorbing means having a body member formed longitudinally between the upper and lower midsoles, and wing members provided on opposite sides of the body member. Each wing member includes an upper inclined portion inclined upwards to be received in the associated upper seating hole, a lower inclined portion inclined downwards to be received in the associated lower seating hole, and a connecting portion connecting the upper and lower inclined portions.
Abstract:
A method of fabricating a phase change memory device includes forming an opening in a first layer, forming a phase change material in the opening and on the first layer, heating the phase change material to a first temperature that is sufficient to reflow the phase change material in the opening, wherein the first temperature is less than a melting point of the phase change material, and, after heating the phase change material to the first temperature, patterning the phase change material to define a phase change element in the opening.
Abstract:
A phase change memory cell includes an interlayer insulating layer formed on a semiconductor substrate, and a first electrode and a second electrode disposed in the interlayer insulating layer. A phase change material layer is disposed between the first and second electrodes. The phase change material layer may be an undoped GeBiTe layer, a doped GeBiTe layer containing an impurity or a doped GeTe layer containing an impurity. The undoped GeBiTe layer has a composition ratio within a range surrounded by four points (A1(Ge21.43, Bi16.67, Te61.9), A2(Ge44.51, Bi0.35, Te55.14), A3(Ge59.33, Bi0.5, Te40.17) and A4(Ge38.71, Bi16.13, Te45.16)) represented by coordinates on a triangular composition diagram having vertices of germanium (Ge), bismuth (Bi) and tellurium (Te). The doped GeBiTe layer contains an impurity and has a composition ratio within a range surrounded by four points (D1(Ge10, Bi20, Te70), D2(Ge30, Bi0, Te70), D3(Ge70, Bi0, Te30) and D4(Ge50, Bi20, Te30)) represented by coordinates on the triangular composition diagram.