摘要:
The present invention relates to a GaN-based semiconductor light emitting diode and a method of manufacturing the same. The GaN-based semiconductor light emitting diode includes: a substrate; a n-type nitride semiconductor layer formed on the substrate; an active layer formed on a predetermined portion of the n-type nitride semiconductor layer; a p-type nitride semiconductor layer formed on the active layer; a transparent conductive layer formed on the p-type nitride semiconductor layer; an insulating layer formed on an upper center portion of the transparent conductive layer, the insulating layer having a contact hole defining a p-type contact region; a p-electrode formed on the insulating layer and electrically connected to the transparent conductive layer through the contact hole; and an n-electrode formed on the n-type nitride semiconductor layer where no active layer is formed.
摘要:
A gallium nitride semiconductor LED includes a substrate for growing a GaN semiconductor material, an n-type GaN clad layer formed on the substrate and doped with Al, an active layer having a quantum well structure formed on the n-type GaN clad layer, and a p-type GaN clad layer formed on the active layer.
摘要:
Provided is an optical module including a microstrip line, a traveling wave type optical device positioned in the end of the microstrip line, and at least one balanced open stub connected to the microstrip line for the impedance matching at a specific frequency such as 40 GHz and 60 GHz. For the fine tuning, laser trimming can be applied to the stub. A transition region is formed between the optical device and the microstrip line. A termination resistor is formed to face the microstrip line with the optical device therebetween. A bandwidth can be controlled at a specific frequency by adjusting a number of the stubs or a value of the termination resistor.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
A nitride semiconductor light emitting device including a light emitting diode and a diode formed on a single substrate, in which the light emitting diode and the diode use a common electrode. According to the present invention, an active layer and a p-type nitride semiconductor layer are each divided into a first region and a second region by an insulative isolation layer, and an ohmic contact layer is formed on the p-type nitride semiconductor layer contained in the first region. A p-type electrode is formed on the ohmic contact layer and is extended to the p-type nitride semiconductor layer contained in the second region. An n-type electrode is formed on the p-type nitride semiconductor layer contained in the second region, passes through the p-type nitride semiconductor layer and the active layer contained in the second region, and is connected to the first n-type nitride semiconductor layer.
摘要:
The present invention relates to a method of making a plasma display panel, and more specifically, a method of forming a dielectric layer on an upper substrate of a plasma display panel. According to first embodiment of the present invention, a method of forming a dielectric layer on an upper substrate of a plasma display panel, comprises steps of: forming a plurality of sustain electrodes on the upper substrate, and bus electrodes on the sustain electrodes; forming an electrode discoloration prevention layer which envelops said sustain electrodes and said bus electrodes, said electrode discoloration prevention layer including a green sheet by first casting; forming a penetration rate enhancement layer on the electrode discoloration prevention layer, said penetration rate enhancement layer including a green sheet by second casting.
摘要:
Provided is an electrochemical device comprising two types of separators having different energy to break, wherein the outermost electrode layer of the electrode assembly includes an active material non-coated cathode, an active material non-coated anode, and a separator (second separator) disposed between the cathode and anode and having relatively low energy to break compared to that of separators (first separator) in other electrode layers. Therefore, it is possible to remarkably improve safety of the battery by inducing primary short-circuiting in the outermost electrode layer of a battery, thus facilitating heat dissipation of the battery, upon application of external impact.
摘要:
Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1−x1−y1)N (where 0≦x1≦1, 0≦y1≦1, and 0≦x1+y1≦1), a multiple quantum well-structured active layer made of undoped InAGa1−AN (where 0
摘要翻译:本文公开了一种氮化物基半导体发光器件。 氮化物系半导体发光元件包括由n型Al x In 1(1-x1-y1)构成的n型覆盖层, N(其中0 <= X 1 <= 1,0 <= Y 1 <= 1,AND 0 <= X 1 由未掺杂的In N a Ga 1-A N(N 1)组成的多量子阱结构的有源层, 其中形成在n型覆盖层上的0 1-y2 N(其中0 <= Y2-2 <1)和由p型Al < (1-x3-y3)N(其中0
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.