Abstract:
A plasma processing apparatus comprises a plate that separates a high frequency induction antenna from a vacuum chamber. The plate comprises a nonmagnetic metal plate that has an opening and a dielectric material member that seals the opening. The area of the nonmagnetic metal plate is larger than the area of the dielectric material member.
Abstract:
A plasma processing method comprises the steps of supplying a low-frequency bias to a first electrode carrying a substrate, and supplying a high-frequency power to a second electrode facing the first electrode, wherein the low-frequency bias is supplied to the first electrode in advance of starting plasma by the energy of the high-frequency power, with an electric power sufficient to form an ion-sheath on the surface of the substrate.
Abstract:
A plasma process apparatus includes first and second electrodes or susceptors located in a process container with a space interposed therebetween, first and second electrodes being disposed to support a semiconductor wafer such that the wafers are opposed to each other through a plasma a generating region. A high frequency voltages are applied to the first and second electrodes to supply a high frequency power to the plasma generating region, and a rotating magnetic field is generated in the plasma generating region, so that the high frequency power and the rotating magnetic field generate plasma of a process gas in the plasma generating region. Compensating-process-gas supply mechanism is provided for supplying a compensating process gas to part of the plasma generating region in synchronism with the rotation of the rotating magnetic field to compensate nonuniformity in the density of plasma generated in the plasma generating region.
Abstract:
In one aspect of the invention, CHF.sub.3 gas and CF.sub.4 gas (i.e., reactant gases), and argon gas (i.e., plasma-stabilizing gas) are introduced into a vacuum chamber. RF power is then applied between the electrodes within the chamber, thereby generating plasma. The plasma is applied to a substrate placed in the chamber, thus etching the SiO.sub.2 film formed on the substrate. A spectrometer extracts a light beam of a desired wavelength, emitted from the CF.sub.2 radical which contributes to the etching. An end-point detecting section monitors the luminous intensity of the CF.sub.2 radical reacting with SiO.sub.2 during the etching. Once the SiO.sub.2 film has been etched away, the luminous intensity of the CF.sub.2 radical increases. Upon detecting this increase, the section determines that etching has just ended. The selected wavelength ranges from 310 nm to 236 nm, preferably being 219.0 nm, 230.0 nm, 211.2 nm, 232.5 nm, or any one ranging from 224 nm to 229 nm. In another aspect of the invention, the device attached to the observation window of the chamber removes products stuck to the window during the etching. The window thus cleaned, more light than otherwise passes through the window and reaches the spectrometer. This enables the section to detect even a slight change in the luminous intensity of the CF.sub.2 radical, thereby detecting the end point of etching with accuracy.
Abstract:
A substrate processing apparatus capable of removing deposits attached on a component of a lower temperature in a gap between two components, temperatures of which are greatly different from each other, without degrading a working ratio of the substrate processing apparatus. In the substrate processing apparatus, a chamber receives a wafer, a focus ring surrounds the wafer disposed in the chamber, a side surface protective member transmits a laser beam, a laser beam irradiating apparatus irradiates the laser beam to the side surface protective member, an inner focus ring of the focus ring is disposed adjacent to the wafer and is cooled down and an outer focus ring surrounds the inner focus ring and is not cooled down in a focus ring, and a facing surface of the side surface protective member faces a gap between the inner focus ring and the outer focus ring.
Abstract:
A temperature measuring method includes: transmitting a light to a measurement point of an object to be measured, the object being a substrate on which a thin film is formed; measuring a first interference wave caused by a reflected light from a surface of the substrate, and a second interference wave caused by reflected lights from an interface between the substrate and the thin film and from a rear surface of the thin film; calculating an optical path length from the first interference wave to the second interference wave; calculating a film thickness of the thin film; calculating an optical path difference between an optical path length of the substrate and the calculated optical path length; compensating for the optical path length from the first interference wave to the second interference wave; and calculating a temperature of the object at the measurement point.
Abstract:
An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency is connected to the upper electrode. A second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber while any one of application voltage, application current, and application power from the variable DC power supply to the upper electrode is controlled, to generate plasma of the process gas so as to perform plasma etching.
Abstract:
In a plasma processing apparatus, a first electrode is attached to a grounded evacuable processing chamber via an insulating material or a space and a second electrode disposed in parallel with the first electrode spaced apart therefrom in the processing chamber, the second electrode supporting a target substrate to face the first electrode. A first radio frequency power supply unit applies a first radio frequency power of a first frequency to the second electrode, and a second radio frequency power supply unit applies a second radio frequency power of a second frequency lower than the first frequency to the second electrode. Further, a processing gas supply unit supplies a processing gas to a processing space formed by the first and the second electrode and a sidewall of the processing chamber. Moreover, an inductor electrically is connected between the first electrode and a ground potential.
Abstract:
A stage onto which is electrostatically attracted a substrate to be processed in a substrate processing apparatus, which enables the semiconductor device yield to be improved. A temperature measuring apparatus 200 measures a temperature of the substrate to be processed. A temperature control unit 400 carries out temperature adjustment on the substrate to be processed such as to become equal to a target temperature based on a preset parameter. A temperature control unit 400 controls the temperature of the substrate to be processed by controlling the temperature adjustment by the temperature control unit 400 based on a measured temperature measured by the temperature measuring apparatus 200.
Abstract:
A temperature measurement apparatus includes a light source; a first splitter that splits a light beam into a measurement beam and a reference beam; a reference beam reflector that reflects the reference beam; an optical path length adjustor; a second splitter that splits the reflected reference beam into a first reflected reference beam and a second reflected reference beam; a first photodetector that measures an interference between the first reflected reference beam and a reflected measurement beam obtained by the measurement beam reflected from a target object; a second photodetector that measures an intensity of the second reflected reference beam; and a temperature calculation unit. The temperature calculation unit calculates a location of the interference by subtracting an output signal of the second photodetector from an output signal of the first photodetector, and calculates a temperature of the target object from the calculated location of the interference.