Abstract:
A system and method for monitoring a subject are presented. The system includes a sensing device including at least one magnetic source to generate a magnetic field and an array of magnetic sensors disposed within the magnetic field. The sensor array obtains a plurality of magnetic field measurements at a plurality of locations along a vessel carrying a fluid including one or more magnetic particles. Further, the system includes a processing subsystem communicatively coupled to the sensing device, where the processing subsystem determines variations in the measurements caused by magnetization-relaxation of the magnetic particles based on a coupled model that defines behavior of the fluid in the varying magnetic field based on principles of magnetization-relaxation, bulk motion of the magnetic particles towards a determined gradient of the magnetic field, magnetostatics, and conservation of momentum. The processing subsystem estimates values of one or more desired parameters based on the determined variations.
Abstract:
A system includes an implantable sensor assembly. The implantable sensor assembly includes a housing. The housing includes a substrate layer comprising an interior surface and an exterior surface, and a cap layer, wherein the substrate layer and the cap layer are coupled to form an enclosed cavity that at least partially encloses the interior surface of the substrate layer within the cavity and wherein both the substrate layer and the cap layer are formed from an insulating material. The implantable sensor assembly also includes one or more electronic components disposed within the cavity of the housing and one or more probes disposed on the exterior surface of the substrate layer and electrically coupled to the one or more electronic components by one or more electrical connections extending through the housing.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.
Abstract:
A system and method for monitoring a subject are presented. The system includes a sensing device including at least one magnetic source to generate a magnetic field and an array of magnetic sensors disposed within the magnetic field. The sensor array obtains a plurality of magnetic field measurements at a plurality of locations along a vessel carrying a fluid including one or more magnetic particles. Further, the system includes a processing subsystem communicatively coupled to the sensing device, where the processing subsystem determines variations in the measurements caused by magnetization-relaxation of the magnetic particles based on a coupled model that defines behavior of the fluid in the varying magnetic field based on principles of magnetization-relaxation, bulk motion of the magnetic particles towards a determined gradient of the magnetic field, magnetostatics, and conservation of momentum. The processing subsystem estimates values of one or more desired parameters based on the determined variations.
Abstract:
A method and system for performing electrical impedance imaging of a subject of interest using a plurality of electrodes is provided. The method includes applying one or more determined current patterns to one or more electrodes of the plurality of electrodes. Further, the method includes determining a resultant voltage at at least one electrode of the one or more electrodes in response to the one or more determined current patterns. Moreover, the method includes estimating a change in a contact impedance for the at least one electrode of the one or more electrodes. Additionally, the method includes calculating a compensated voltage for the at least one electrode based on an estimated change in a corresponding contact impedance of the at least one electrode.
Abstract:
An array of emitters includes a device substrate having first and second sides, a thermally and electrically conductive layer disposed on the first side of the device substrate, and an interconnect layer disposed on a first plurality of portions of the second side of the device substrate. The array of the emitters further includes a plurality of emitters disposed in a second plurality of portions of the device substrate, where the plurality of emitters is electrically coupled to the thermally and electrically conductive layer. Also, the array of the emitters includes a plurality of wirebond contacts configured to electrically couple a portion of the interconnect layer to a corresponding emitter of the plurality of emitters, and a plurality of encapsulations, where one or more encapsulations of the plurality of encapsulations are disposed on at least a portion of a corresponding wirebond contact of the plurality of wirebond contacts.
Abstract:
An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
Abstract:
A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.